Contents

1 Review of Signal Processing and Detection

1. Overview
 1.1 Digital data transmission
 1.2 Communication system blocks
 1.3 Goals of this class
 1.4 Class organization
 1.5 Lessons from class

2 Signals and Detection

2. Signals and Detection
 2.1 Data Modulation and Demodulation
 2.1.1 Mapping of vectors to waveforms
 2.1.2 Demodulation
 2.2 Data detection
 2.2.1 Criteria for detection
 2.2.2 Minmax decoding rule
 2.2.3 Decision regions
 2.2.4 Bayes rule for minimizing risk
 2.2.5 Irrelevance and reversibility
 2.2.6 Complex Gaussian Noise
 2.2.7 Continuous additive white Gaussian noise channel
 2.3 Error Probability for AWGN Channels
 2.3.1 Discrete detection rules for AWGN
 2.3.2 Rotational and transitional invariance
 2.3.3 Bounds for \(M > 2 \)
 2.4 Signal sets and measures
 2.4.1 Basic terminology
 2.4.2 Signal constellations
 2.4.3 Lattice-based constellation:

3 Passband Systems

3. Passband Systems
 3.1 Equivalent representations
 3.2 Frequency analysis
 3.3 Channel Input-Output Relationships
 3.4 Baseband equivalent Gaussian noise
 3.5 Circularly symmetric complex Gaussian processes
 3.5.1 Gaussian hypothesis testing - complex case
II Transmission over Linear Time-Invariant channels

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 Inter-symbol Interference and optimal detection</td>
<td>53</td>
</tr>
<tr>
<td>4.1 Successive transmission over an AWGN channel</td>
<td>53</td>
</tr>
<tr>
<td>4.2 Inter-symbol Interference channel</td>
<td>54</td>
</tr>
<tr>
<td>4.2.1 Matched filter</td>
<td>55</td>
</tr>
<tr>
<td>4.2.2 Noise whitening</td>
<td>56</td>
</tr>
<tr>
<td>4.3 Maximum Likelihood Sequence Estimation (MLSE)</td>
<td>59</td>
</tr>
<tr>
<td>4.3.1 Viterbi Algorithm</td>
<td>60</td>
</tr>
<tr>
<td>4.3.2 Error Analysis</td>
<td>61</td>
</tr>
<tr>
<td>4.4 Maximum a-posteriori symbol detection</td>
<td>63</td>
</tr>
<tr>
<td>4.4.1 BCJR Algorithm</td>
<td>63</td>
</tr>
<tr>
<td>5 Equalization: Low complexity suboptimal receivers</td>
<td>65</td>
</tr>
<tr>
<td>5.1 Linear estimation</td>
<td>65</td>
</tr>
<tr>
<td>5.1.1 Orthogonality principle</td>
<td>65</td>
</tr>
<tr>
<td>5.1.2 Wiener smoothing</td>
<td>68</td>
</tr>
<tr>
<td>5.1.3 Linear prediction</td>
<td>70</td>
</tr>
<tr>
<td>5.1.4 Geometry of random processes</td>
<td>72</td>
</tr>
<tr>
<td>5.2 Suboptimal detection: Equalization</td>
<td>73</td>
</tr>
<tr>
<td>5.3 Zero-forcing equalizer (ZFE)</td>
<td>74</td>
</tr>
<tr>
<td>5.3.1 Performance analysis of the ZFE</td>
<td>75</td>
</tr>
<tr>
<td>5.4 Minimum mean squared error linear equalization (MMSE-LE)</td>
<td>76</td>
</tr>
<tr>
<td>5.4.1 Performance of the MMSE-LE</td>
<td>77</td>
</tr>
<tr>
<td>5.5 Decision-feedback equalizer</td>
<td>80</td>
</tr>
<tr>
<td>5.5.1 Performance analysis of the MMSE-DFE</td>
<td>83</td>
</tr>
<tr>
<td>5.5.2 Zero forcing DFE</td>
<td>86</td>
</tr>
<tr>
<td>5.6 Fractionally spaced equalization</td>
<td>87</td>
</tr>
<tr>
<td>5.6.1 Zero-forcing equalizer</td>
<td>89</td>
</tr>
<tr>
<td>5.7 Finite-length equalizers</td>
<td>89</td>
</tr>
<tr>
<td>5.7.1 FIR MMSE-LE</td>
<td>90</td>
</tr>
<tr>
<td>5.7.2 FIR MMSE-DFE</td>
<td>92</td>
</tr>
<tr>
<td>6 Transmission structures</td>
<td>97</td>
</tr>
<tr>
<td>6.1 Pre-coding</td>
<td>97</td>
</tr>
<tr>
<td>6.1.1 Tomlinson-Harashima precoding</td>
<td>97</td>
</tr>
<tr>
<td>6.2 Multicarrier Transmission (OFDM)</td>
<td>100</td>
</tr>
<tr>
<td>6.2.1 Fourier eigenbasis of LTI channels</td>
<td>101</td>
</tr>
<tr>
<td>6.2.2 Orthogonal Frequency Division Multiplexing (OFDM)</td>
<td>101</td>
</tr>
<tr>
<td>6.2.3 Frequency Domain Equalizer (FEQ)</td>
<td>105</td>
</tr>
<tr>
<td>6.2.4 Alternate derivation of OFDM</td>
<td>105</td>
</tr>
<tr>
<td>6.2.5 Successive Block Transmission</td>
<td>108</td>
</tr>
<tr>
<td>6.3 Channel Estimation</td>
<td>110</td>
</tr>
<tr>
<td>6.3.1 Training sequence design</td>
<td>111</td>
</tr>
<tr>
<td>6.3.2 Relationship between stochastic and deterministic least squares</td>
<td>114</td>
</tr>
</tbody>
</table>
10 Reliable transmission for ISI channels 173
 10.1 Capacity of ISI channels 173
 10.2 Coded OFDM .. 177
 10.2.1 Achievable rate for coded OFDM 179
 10.2.2 Waterfilling algorithm 180
 10.2.3 Algorithm Analysis 183
 10.3 An information-theoretic approach to MMSE-DFE 183
 10.3.1 Relationship of mutual information to MMSE-DFE 185
 10.3.2 Consequences of CDEF result 185
Part I

Review of Signal Processing and Detection
Chapter 1

Overview

1.1 Digital data transmission

Most of us have used communication devices, either by talking on a telephone, or browsing the internet on a computer. This course is about the mechanisms that allows such communications to occur. The focus of this class is on how “bits” are transmitted through a “communication” channel. The overall communication system is illustrated in Figure 1.1

![Communication block diagram](image)

Figure 1.1: Communication block diagram.

1.2 Communication system blocks

Communication Channel: A communication channel provides a way to communicate at large distances. But there are external signals or “noise” that effects transmission. Also ‘channel’ might behave differently to different input signals. A main focus of the course is to understand signal processing techniques to enable digital transmission over such channels. Examples of such communication channels include: telephone lines, cable TV lines, cell-phones, satellite networks, etc. In order to study these problems precisely, communication channels are often modelled mathematically as illustrated in Figure 1.2.

Source, Source Coder, Applications: The main reason to communicate is to be able to talk, listen to music, watch a video, look at content over the internet, etc. For each of these cases the “signal”
respectively voice, music, video, graphics has to be converted into a stream of bits. Such a device is called a quantizer and a simple scalar quantizer is illustrated in Figure 1.3. There exists many quantization methods which convert and compress the original signal into bits. You might have come across methods like PCM, vector quantization, etc.

Channel coder: A channel coding scheme adds redundancy to protect against errors introduced by the noisy channel. For example a binary symmetric channel (illustrated in Figure 1.4) flips bits randomly and an error correcting code attempts to communicate reliably despite them.

Signal transmission: Converts “bits” into signals suitable for communication channel which is typically analog. Thus message sets are converted into waveforms to be sent over the communication channel.
1.2. COMMUNICATION SYSTEM BLOCKS

This is called modulation or signal transmission. One of the main focuses of the class.

Signal detection: Based on noisy received signal, receiver decides which message was sent. This procedure called “signal detection” depends on the signal transmission methods as well as the communication channel. Optimum detector minimizes the probability of an erroneous receiver decision. Many signal detection techniques are discussed as a part of the main theme of the class.

Multiuser networks: Multiuser networks arise when many users share the same communication channel. This naturally occurs in wireless networks as shown in Figure 1.5. There are many different forms of multiuser networks as shown in Figures 1.6, 1.7 and 1.8.
CHAPTER 1. OVERVIEW

1.3 Goals of this class

- Understand basic techniques of signal transmission and detection.
- Communication over frequency selective or inter-symbol interference (ISI) channels.
- Reduced complexity (sub-optimal) detection for ISI channels and their performances.
- Multiuser networks.
- Wireless communication - rudimentary exposition.
- Connection to information theory.

Complementary classes

- Source coding/quantization (ref.: Gersho & Gray, Jayant & Noll)
- Channel coding (Modern Coding theory, Urbanke & Richardson, Error correcting codes, Blahut)
- Information theory (Cover & Thomas)
1.4 Class organization

These are the topics covered in the class.

- Digital communication & transmission
- Signal transmission and modulation
- Hypothesis testing & signal detection
- Inter-symbol interference channel - transmission & detection
- Wireless channel models: fading channel
- Detection for fading channels and the tool of diversity
- Multiuser communication - TDMA, CDMA
- Multiuser detection
- Connection to information theory

1.5 Lessons from class

These are the skills that you should know at the end of the class.

- Basic understanding of optimal detection
- Ability to design transmission & detection schemes in inter-symbol interference channels
- Rudimentary understanding of wireless channels
- Understanding wireless receivers and notion of diversity
- Ability to design multiuser detectors
- Connect the communication blocks together with information theory
Chapter 2

Signals and Detection

2.1 Data Modulation and Demodulation

In data modulation we convert information bits into waveforms or signals that are suitable for transmission over a communication channel. The detection problem is reversing the modulation, i.e., finding which bits were transmitted over the noisy channel.

Example 2.1.1. (see Figure 2.2) Binary phase shift keying. Since DC does not go through channel, this implies that 0V, and 1V, mapping for binary bits will not work. Use:

\[x_0(t) = \cos(2\pi 150 t), \quad x_1(t) = -\cos(2\pi 150 t). \]

Detection: Detect +1 or -1 at the output.
Caveat: This is for single transmission. For successive transmissions, stay tuned!
2.1.1 Mapping of vectors to waveforms

Consider set of real-valued functions \(\{ f(t) \} \), \(t \in [0, T] \) such that

\[
\int_0^T f^2(t) dt < \infty
\]

This is called a Hilbert space of continuous functions, \(i.e., L_2[0, T] \).

Inner product

\[
\langle f, g \rangle = \int_0^T f(t)g(t) dt.
\]

Basis functions: A class of functions can be expressed in terms of basis functions \(\{ \phi_n(t) \} \) as

\[
x(t) = \sum_{n=1}^{N} x_n \phi_n(t),
\]

where \(\langle \phi_n, \phi_m \rangle = \delta_{n-m} \). The waveform carries the information through the communication channel.

Relationship in (2.1) implies a mapping \(x = \begin{bmatrix} x_1 \\ \vdots \\ x_N \end{bmatrix} \) to \(x(t) \).

Definition 2.1.1. Signal Constellation The set of \(M \) vectors \(\{ x_i \}, i = 0, \ldots, M - 1 \) is called the signal constellation.

![Binary Antipodal](image)

![Quadrature Phase-Shift Keying](image)

Figure 2.3: Example of signal constellations.

The mapping in (2.1) enables mapping of points in \(L_2[0, T] \) with properties in \(\mathbb{R}^N \). If \(x_1(t) \) and \(x_2(t) \) are waveforms and their corresponding basis representation are \(x_1 \) and \(x_2 \) respectively, then,

\[
\langle x_1, x_2 \rangle = \langle x_1, x_2 \rangle
\]
where the left side of the equation is \(<x_1, x_2> = \int_0^T x_1(t)x_2(t)dt \) and the right side is \(<x_1, x_2> = \sum_{i=1}^N x_1(i)x_2(i) \).

Examples of signal constellations: Binary antipodal, QPSK (Quadrature Phase Shift Keying).

Vector Mapper: Mapping of binary vector into one of the signal points. Mapping is not arbitrary, clever choices lead to better performance over noisy channels. In some channels it is suitable to label points that are “close” in Euclidean distance to map to being “close” in Hamming distance. Examples of two alternate labelling schemes are illustrated in Figure 2.4.

![Vector Mapper](image1)

Modulator: Implements the basis expansion of (2.1).

![Modulator](image2)

Signal Set: Set of modulated waveforms \(\{x_i(t)\}, i = 0, \ldots, M - 1 \) corresponding to the signal constellation \(x_i = \left[\begin{array}{c} x_{i,1} \\ \vdots \\ x_{i,N} \end{array}\right] \in \mathbb{R}^N \).

Definition 2.1.2. Average Energy:

\[
\mathcal{E}_x = \mathbb{E}[|x|^2] = \sum_{i=0}^{M-1} |x_i|^2 p_X(i)
\]

where \(p_X(i) \) is the probability of choosing \(x_i \).
The probability \(p_x(i) \) depends on,

- Underlying probability distribution of bits in message source.
- The vector mapper.

Definition 2.1.3. Average power: \(P_x = \frac{\xi^2}{T} \) (energy per unit time)

Example 2.1.2. Consider a 16 QAM constellation with basis functions:

![16 QAM constellation figure]

Figure 2.6: 16 QAM constellation.

\[
\phi_1(t) = \sqrt{\frac{2}{T}} \cos \frac{\pi t}{T}, \quad \phi_2(t) = \sqrt{\frac{2}{T}} \sin \frac{\pi t}{T}
\]

For \(\frac{1}{T} = 2400 \text{Hz} \), we get a rate of \(\log(16) \times 2400 = 9.6 \text{kb/s} \).

Gram-Schmidt procedure allows choice of minimal basis to represent \(\{x_i(t)\} \) signal sets. More on this during the review/exercise sessions.

2.1.2 Demodulation

The demodulation takes the continuous time waveforms and extracts the discrete version. Given the basis expansion of (2.1), the demodulation extracts the coefficients of the expansion by projecting the signal onto its basis as shown below.

\[
x(t) = \sum_{k=1}^{N} x_k \phi_k(t) \tag{2.2}
\]

\[
\Rightarrow \int_{0}^{T} x(t) \phi_n(t) dt = \int_{0}^{T} \sum_{k=1}^{N} x_k \phi_k(t) \phi_n(t) dt
\]

\[
= \sum_{k=1}^{N} x_k \int_{0}^{T} \phi_k(t) \phi_n(t) dt = \sum_{k=1}^{N} x_k \delta_{k-n} = x_n
\]

Therefore in the noiseless case, demodulation is just recovering the coefficients of the basis functions.

Definition 2.1.4. Matched Filter: The matched filter operation is equivalent to the recovery of the coefficients of the basis expansion since we can write as an equation: \(\int_{0}^{T} x(t) \phi_n(t) dt = x(t) \ast \phi_n(T-t)|_{t=T} = x(t) \ast \phi_n(-t)|_{t=0} \).

Therefore, the basis coefficients recovery can be interpreted as a filtering operation.
2.2. DATA DETECTION

We assume that the demodulator captures the “essential” information about x from $y(t)$. This notion of “essential” information will be explored in more depth later. In discrete domain:

$$P_Y(y) = \sum_{i=0}^{M-1} p_{Y|X}(y|i)p_X(i)$$

This is illustrated in Figure 2.9 showing the equivalent discrete channel.

Example 2.2.1. Consider the Additive White Gaussian Noise Channel (AWGN). Here $y = x + z$, and

$$m \rightarrow \text{VECTOR MAPPER} \rightarrow x \rightarrow \text{CHANNEL} \rightarrow y$$

Figure 2.9: Equivalent discrete channel.
2.2.1 Criteria for detection

Detection is guessing input x given the noisy output y. This is expressed as a function $\hat{m} = H(y)$.

If $\mathcal{M} = m$ was the message sent, then

\[
\text{Probability of error } = P_e \overset{\text{def}}{=} \text{Prob}(\hat{m} \neq m).
\]

Definition 2.2.1. Optimum detector: Minimizes error probability over all detectors. The probability of observing $Y = y$ if the message m_i was sent is,

\[
p(Y = y \mid \mathcal{M} = m_i) = p_{Y \mid X}(y \mid i)
\]

Decision Rule:

\[
H : Y \rightarrow \mathcal{M} \text{ is a function which takes input } y \text{ and outputs a guess on the transmitted message. Now,}
\]

\[
P(H(Y) \text{ is correct}) = \int_Y p[H(y) \text{ is correct} \mid Y = y] p_Y(y) dy \tag{2.3}
\]

Now $H(y)$ is a deterministic function of y. Suppose m was transmitted. For the given y, $H(\bullet)$ chooses a particular hypothesis, say m_i, deterministically. Now, what is the probability that i was the transmitted message? This is the probability that y resulted through m_i being transmitted. Therefore we can write

\[
P[H(Y) \text{ is correct} \mid Y = y] = \mathbb{P}[\hat{m} = H(y) = m_i \mid Y = y]
\]

\[
= \mathbb{P}[x = x(m_i) = x_i \mid Y = y]
\]

\[
= \mathbb{P}_{X \mid Y}[x = x_i \mid y]
\]

Inserting this into (2.3), we get

\[
P(H(Y) \text{ is correct}) \leq \int_Y \max_i \mathbb{P}_{X \mid Y}[x = x_i \mid y] p_Y(y) dy
\]

\[
= P(H_{\text{MAP}}(Y) \text{ is correct})
\]

Implication: The decision rule

\[
H_{\text{MAP}}(y) = \arg \max_i \mathbb{P}_{X \mid Y}[x = x_i \mid y]
\]

maximizes probability of being correct, i.e., minimizes error probability. Therefore, this is the optimal decision rule. This is called the Maximum-a-posteriori (MAP) decision rule.

Notes:

- MAP detector needs knowledge of the priors $p_X(x)$.
- It can be simplified as follows:

\[
p_{X \mid Y}(x_i \mid y) = \frac{p_{Y \mid X}(y \mid x_i)p_X(x_i)}{p_Y(y)} \equiv p_{Y \mid X}(y \mid x_i)p_X(x_i)
\]

since $p_Y(y)$ is common to all hypotheses. Therefore the MAP decision rule is equivalently written as:

\[
H_{\text{MAP}}(y) = \arg \max_i p_{Y \mid X}(y \mid x_i)p_X(x_i)
\]
An alternate proof for MAP decoding rule \(\text{(binary hypothesis)}\)

Let \(\Gamma_0\) be the region such that \(\forall y \in \Gamma_0, H(y) = x_0\) and similarly \(\Gamma_1\) is the region associated to \(x_1\).

For \(\pi_0 = P_X(x_0)\) and \(\pi_1 = P_X(x_1)\)

\[
\mathbb{P}[\text{error}] = \mathbb{P}[H(y) \text{ is wrong}] = \pi_0 \mathbb{P}[y \in \Gamma_1 | H_0] + \pi_1 \mathbb{P}[y \in \Gamma_0 | H_1]
\]

\[
= \pi_0 \int_{\Gamma_1} P_{Y|X}(y | x_0) dy + \pi_1 \int_{\Gamma_0} P_{Y|X}(y | x_1) dy
\]

\[
\begin{align*}
&= \pi_0 \int_{\Gamma_1} P_{Y|X}(y | x_0) dy + \pi_1 \left[1 - \int_{\Gamma_1} P_{Y|X}(y | x_1) dy \right] \\
&= \pi_1 + \int_{\Gamma_1} \left[\pi_0 P_{Y|X}(y | x_0) - \pi_1 P_{Y|X}(y | x_1) \right] dy
\end{align*}
\]

Therefore, in order to make the error probability smallest, we choose on \(y \in \Gamma_1\) if

\[
\pi_0 P_{Y|X}(y | x_0) - \pi_1 P_{Y|X}(y | x_1)
\]

\[\rightarrow\]

\[
\begin{align*}
\pi_0 P_{Y|X}(y | x_0) &< \pi_1 P_{Y|X}(y | x_1) \\
\end{align*}
\]

That is, \(\Gamma_1\) is defined as,

\[
\frac{P_X(x_0)P_{Y|X}(y | x_0)}{P_Y(y)} < \frac{P_X(x_1)P_{Y|X}(y | x_1)}{P_Y(y)}
\]

or \(y \in \Gamma_1\), if,

\[
P_{X|Y}(x_0 | y) < P_{X|Y}(x_1 | y)
\]

\(i.e.,\) the MAP rule!

Maximum Likelihood detector: If the priors are assumed uniform, \(i.e., p_X(x_i) = \frac{1}{M}\) then the MAP rule becomes,

\[
H_{ML}(y) = \arg \max_i p_{Y|X}[y | x_i]
\]
which is called the Maximum-Likelihood rule. This because it chooses the message that most likely
caused the observation (ignoring how likely the message itself was). This decision rule is clearly inferior
to MAP for non-uniform priors.

Question: Suppose the prior probabilities were unknown, is there a “robust” detection scheme?
One can think of this as a “game” where nature chooses the prior distribution and the detection rule is
under our control.

Theorem 2.2.1. The ML detector minimizes the maximum possible average error probability when the
input distribution is unknown and if the conditional probability of error \(p[H_{ML}(y) \text{ is incorrect} \mid \mathcal{M} = m_i] \)
is independent of \(i \).

Proof: Assume that \(P_{e,ML|m=m_i} \) is independent of \(i \).
Let
\[
P_{e,ML|m=m_i} = P_e^{ML}(i) \overset{def}{=} p^{ML}
\]
Hence
\[
P_{e,ML}(P_x) = \sum_{i=0}^{M-1} P_x(i) P_{e,ML|m=m_i} = p^{ML}
\] (2.5)
Therefore
\[
\max_{P_X} P_{e,ML} = \max_{P_X} \sum_{i=0}^{M-1} P_x(i) P_{e,ML|m=m_i} = p^{ML}
\]
For any hypothesis test \(H \),
\[
\max_{P_X} P_{e,H} = \max_{P_X} \sum_{i=0}^{M-1} P_x(i) P_{e,H|m=m_i}
\]
\[
\overset{(a)}{=} \sum_{i=0}^{M-1} \frac{1}{M} P_{e,H|m=m_i}
\]
\[
\overset{(b)}{=} \sum_{i=0}^{M-1} \frac{1}{M} P_{e,ML|m=m_i} = P_{e,ML}
\]
where (a) is because a particular choice of \(P_X \) can only be smaller than the maximum. And (b) is because
the ML decoder is optimal for the uniform prior.
Thus,
\[
\max_{P_X} P_{e,H} \geq P_{e,ML} = p^{ML},
\]
since due to (2.5)
\[
P_{e,ML} = p^{ML}, \ \forall P_x.
\]

Interpretation: ML decoding is not just a simplification of the MAP rule, but also has some canonical
“robustness” properties for detection under uncertainty of priors, if the regularity condition of theorem
2.2.1 is satisfied. We will explore this further in Section 2.2.2.

Example 2.2.2. The AWGN channel:
Let us assume the following,
\[
y = x_i + z,
\]
where

\[z \sim \mathcal{N}(0, \sigma^2 I), \quad x, y, z \in \mathbb{R}^N \]

Hence

\[p_z(z) = \frac{1}{(2\pi\sigma^2)^{\frac{N}{2}}} e^{-\frac{||z||^2}{2\sigma^2}} \]

giving

\[p_{Y|X}(y | x) = p_z(y - x) \]

MAP decision rule for AWGN channel

\[
P_{Y|X}(y | x) = \frac{1}{(2\pi\sigma^2)^{\frac{N}{2}}} e^{-\frac{||y-x||^2}{2\sigma^2}}
\]

\[
P_{X|Y} = \frac{p_{Y|X}(y | x)p_X(x_i)}{p_Y(y)}
\]

Therefore the MAP decision rule is:

\[
H_{MAP}(y) = \arg\max_i \left\{ p_{Y|X}(X = x_i | y) \right\} = \arg\max_i \left\{ p_{Y|X}(y | x_i) p_X(x_i) \right\}
\]

\[
= \arg\max_i \left\{ p_X(x_i) \frac{1}{(2\pi\sigma^2)^{\frac{N}{2}}} e^{-\frac{||y-x_i||^2}{2\sigma^2}} \right\}
\]

\[
= \arg\max_i \left\{ \log[p_X(x_i)] - \frac{||y-x_i||^2}{2\sigma^2} \right\}
\]

\[
= \arg\min_i \left\{ \frac{||y-x_i||^2}{2\sigma^2} - \log[p_X(x_i)] \right\}
\]

ML decision rule for AWGN channels

\[
H_{ML}(y) = \arg\max_i \left\{ p_{Y|X}(y | X = x_i) \right\}
\]

\[
= \arg\max_i \left\{ \frac{1}{(2\pi\sigma^2)^{\frac{N}{2}}} e^{-\frac{||y-x_i||^2}{2\sigma^2}} \right\}
\]

\[
= \arg\max_i \left\{ \frac{||y-x_i||^2}{2\sigma^2} \right\}
\]

\[
= \arg\min_i \left\{ \frac{||y-x_i||^2}{2\sigma^2} \right\}
\]

Interpretation: The maximum likelihood decision rule selects the message that is closest in Euclidean distance to received signal.

Observation: In both MAP and ML decision rules, one does not need \(y \), but just the functions, \(||y-x_i||^2 \), \(i \in 0, ..., M-1 \) in order to evaluate the decision rule. Therefore, there is no loss of information if we retain scalars, \(\{ ||y-x_i||^2 \} \) instead of \(y \). In this case, it is moot, but in continuous detection, this reduction is important. Such a function that retains the “essential” information about the parameter of interest is called a **sufficient statistic**.

2.2.2 Minmax decoding rule

The MAP decoding rule needs the knowledge of the prior distribution \(\{ p_X(x = x_i) \} \). If the prior is unknown we develop a criterion which is “robust” to the prior distribution. Consider the criterion

\[
\max_{p_X} \min_H P_{e,H}(p_X)
\]
CHAPTER 2. SIGNALS AND DETECTION

where $P_{e,H}(p_x)$ is the error probability of decision rule H, i.e.,

$$P[H(\mathbf{y}) \text{ is incorrect}] \text{ explicitly depends on } P_X(\mathbf{x})$$

For the binary case,

$$P_{e,H}(p_X) = \pi_0 \mathbb{P}[\mathbf{y} \in \Gamma_1 | x_0] + \pi_1 \mathbb{P}[\mathbf{y} \in \Gamma_0 | x_1]$$

$$= \pi_0 \int_{\Gamma_1} P_Y|X(\mathbf{y} | x_0) d\mathbf{y} + (1 - \pi_0) \int_{\Gamma_0} P_Y|X(\mathbf{y} | x_1) d\mathbf{y}$$

Thus for a given decision rule H which does not depend on p_x, $P_{e,H}(p_X)$ is a linear function of $P_X(x)$.

A “robust” detection criterion is when we want to

$$\min_H \max_{\pi_0} P_{e,H}(\pi_0).$$

Clearly for a given decision rule H,

$$\max_{\pi_0} P_{e,H}(\pi_0) = \max\{ \mathbb{P}[\mathbf{y} \in \Gamma_1 | H_0], \mathbb{P}[\mathbf{y} \in \Gamma_0 | H_1] \}$$

Figure 2.11: $P_{e,ML}(\pi_0)$ as a function of the prior π_0.

Now let us look at the MAP rule for every choice of π_0. Let $V(\pi_0) = P_{e,MAP}(\pi_0)$ i.e., the error probability of the MAP decoding rule as a function of $P_X(\mathbf{x})$ (or π_0).

Since the MAP decoding rule does depend on $P_X(\mathbf{x})$, the error probability is no longer a linear function and is actually concave (see Figure 2.12, and HW problem). Such a concave function has a unique maximum value and if it is strictly concave has a unique maximizer π_0^*. This value $V(\pi_0^*)$ is the largest average error probability for the MAP detector and π_0^* is the worst prior for the MAP detector.

Now, for any decision rule that does not depend on $P_X(\mathbf{x})$, $P_{e,H}(p_x)$ is a linear function of π_0 (for the binary case) and this is illustrated in Figure 2.11. Since $P_{e,H}(p_x) \geq P_{e,MAP}(p_x)$ for each p_x. The line
2.2. DATA DETECTION

Figure 2.12: The average error probability $P_{e,ML}(\pi_0)$ of the MAP rule as a function of the prior π_0.

Figure 2.13: $P_e(H(\pi_0))$ and $P_{e,MAP}(\pi_0)$ as a function of prior π_0.

always lies above the curve $V(\pi_0)$. The best we could do is to make it tangential to $V(\pi_0)$ for some $\tilde{\pi}_0$, as shown in Figure 2.13. This means that such a decision rule is the MAP decoding rule designed for prior $\tilde{\pi}_0$. If we want the $\max_{p_x} P_{e,H}(p_x)$ to be the smallest it is clear that we want $\tilde{\pi}_0 = \pi_0^*$, i.e., design the robust detection rule as the MAP rule for π_0^*. Since π_0^* is the worst prior for the MAP rule, this is the best one could hope for. Since the tangent to $V(\pi_0)$ at π_0^* has slope 0, such a decision rule has the property that $P_{e,H}(\pi_0)$ is independent of π_0.

Therefore, for the minmax rule H^*, we would have

$$P_{H^*}(y \in \Gamma_1 \mid H_0) = P_{H^*}(y \in \Gamma_0 \mid H_1)$$

Therefore for the minmax rule,

$$P_{e,H^*}(\pi_0) = \pi_0 P_{H^*}(y \in \Gamma_1 \mid H_0) + (1 - \pi_0) P_{H^*}(y \in \Gamma_0 \mid H_1)$$

is independent of π_0.

Hence $P_{e,H|y=x_0} = P_{e,H|y=x_1}$, i.e., the error probability conditioned on the message are the same. Note that this was the regularity condition we used in Theorem 2.2.1. Hence regardless of the choice of π_0, the error probability (average) is the same! If $\pi_0^* = \frac{1}{2}$ (i.e., p_x is uniform), then the maximum likelihood rule
is the robust detection rule as stated in Theorem 2.2.1. Note that this is not so if \(\pi_0^2 \neq \frac{1}{2} \), then the MAP rule for \(\pi_0^2 \) becomes the robust detection rule. Also note that the minmax rule makes the performance of all priors as bad as the worst prior.

Note: If \(\pi_0^2 = \frac{1}{2} \), or \(P_X(x) \) is uniform then minmax is the same as ML, and this occurs in several cases.

Since minmax rule becomes Bayes rule for the worst prior, if the worst prior is uniform then clearly the minmax rule is the ML rule. Clearly if ML satisfies \(P_{ML}[error \mid H_j] \) independent of \(j \) then the ML rule is the robust detection rule.

2.2.3 Decision regions

Given the MAP and ML decision rules, we can divide \(\mathbb{R}^N \) into regions which correspond to different decisions.

For example, in the AWGN case, the ML decoding rule will always decide to choose \(m_i \) if
\[
\| y - x_i \| < \| y - x_j \|, \quad \forall j \neq i
\]

Therefore, we can think of the region \(\Gamma_i^ML \) as the decision region for \(m_i \) where,
\[
\Gamma_i^ML = \{ y \in \mathbb{R}^N : \| y - x_i \| < \| y - x_j \|, \quad \forall j \neq i \}
\]

The MAP rule for the AWGN channel is a shifted region:
\[
\Gamma_i^{MAP} = \{ y \in \mathbb{R}^N : \| y - x_i \|^2 - \log[P_X(x_i)] < \| y - x_j \|^2 - \log[P_X(x_j)], \quad \forall j \neq i \}
\]

The ML decision regions have a nice geometric interpretation. They are the Voronoi regions of the set of points \(\{x_i\} \). That is, the decision region associated with \(m_i \) is the set of all points in \(\mathbb{R}^N \) which are closer to \(x_i \) than all the rest.

Moreover, since they are defined by Euclidean norms \(\| y - x_i \|^2 \), the regions are separated by *hyper planes*. To see this observe the decision regions are:
\[
\| y - x_i \|^2 \leq \| y - x_j \|^2, \quad \forall j \neq i
\]
\[
\Rightarrow -2 \cdot y \cdot x_i + \| x_i \|^2 \leq -2 \cdot y \cdot x_j + \| x_j \|^2
\]
\[
\Rightarrow < y, x_j - x_i > \leq \frac{1}{2}(\| x_j \|^2 - \| x_i \|^2)
\]
\[
\Rightarrow < y - \frac{1}{2}(x_j + x_i), x_i - x_j > \geq 0, \quad \forall j \neq i
\]

Hence the decision regions are bounded by hyperplanes since they are determined by a set of linear inequalities. The MAP decoding rule still produces decision regions that are hyper planes.
2.2. DATA DETECTION

Figure 2.15: Voronoi regions for \(\{ x_i \} \), for uniform prior. Hence here the ML and MAP decision regions coincide.

2.2.4 Bayes rule for minimizing risk

Error probability is just one possible criterion for choosing a detector. More generally the detectors minimize other cost functions. For example, let \(C_{i,j} \) denote the cost of choosing hypothesis \(i \) when actually hypothesis \(j \) was true. Then the expected cost incurred by some decision rule \(H(y) \) is:

\[
R_j(H) = \sum_i C_{i,j} \mathbb{P}[H(Y) = m_i \mid M = m_j]
\]

Therefore the overall average cost after taking prior probabilities into account is:

\[
R(H) = \sum_j \mathbb{P}_X(j) R_j(H)
\]

Armed with this criterion we can ask the same question:

Question: What is the optimal decision rule to minimize the above equation?

Note: The error probability criterion corresponds to a cost assignment:

\[
C_{i,j} = 1, \ i \neq j, \ C_{i,i} = 0, \ i = j.
\]

Consider case \(M=2 \), i.e., distinguishing between 2 hypotheses. Rewriting the equation for this case:

\[
R(H) = \mathbb{P}_X(0) R_0(H) + \mathbb{P}_X(1) R_1(H)
\]

where,

\[
R_j(H) = C_{0,j} \mathbb{P}[H(Y) = m_0 \mid M = m_j] + C_{1,j} \mathbb{P}[H(Y) = m_1 \mid M = m_j], \ j = 0, 1
\]

\[
= C_{0,j} \{1 - \mathbb{P}[H(Y) = m_1 \mid M = m_j]\} + C_{1,j} \mathbb{P}[H(Y) = m_1 \mid M = m_j], \ j = 0, 1
\]

Let \(\mathbb{P}_X(0) = \pi_0, \ \mathbb{P}_X(1) = 1 - \pi_0 \)
\[R(H) = \pi_0 C_{0,0} P[y \in \Gamma_0 | x = x_0] + \pi_0 C_{1,0} P[y \in \Gamma_1 | x = x_0] + \pi_1 C_{0,1} P[y \in \Gamma_0 | x = x_1] + \pi_1 C_{1,1} P[y \in \Gamma_1 | x = x_1] \]

\[= \pi_0 C_{0,0} - \pi_0 C_{0,0} P[y \in \Gamma_1 | x = x_0] + \pi_0 C_{1,0} P[y \in \Gamma_1 | x = x_0] + \pi_1 C_{0,1} - \pi_1 C_{1,1} P[y \in \Gamma_1 | x = x_1] + \pi_1 C_{1,1} P[y \in \Gamma_1 | x = x_1] \]

\[= \pi_0 C_{0,0} + \pi_1 C_{0,1} + \pi_0 (C_{1,0} - C_{0,0}) \int_{y \in \Gamma_1} P_{Y|X}(y | x = x_0) dy \]

\[+ \pi_1 (C_{1,1} - C_{0,1}) \int_{y \in \Gamma_1} P_{Y|x}(y | x = x_1) dy \]

\[= \sum_{j=0}^{1} \pi_j C_{0,j} + \sum_{j=0}^{1} \pi_j (C_{1,j} - C_{0,j}) P_{Y|x}(y | x = x_j) \]

Now, just like in the alternate proof for the MAP decoding rule, (see (2.4)) we want to minimize the last term. As seen in Figure 2.10 this is done by collecting the negative area in the function \(\sum_{j=0}^{1} \pi_j (C_{1,j} - C_{0,j}) P_{Y|x}(y | x = x_j) \) as a function of \(y \). Therefore we get the decision rule,

\[\Gamma_1 = \{ y \in \mathbb{R}^N : \sum_{j=0}^{1} \pi_j C_{0,j} + \sum_{j=0}^{1} \pi_j (C_{1,j} - C_{0,j}) P_{Y|x}(y | x = x_j) < 0 \} \]

Likelihood ratio: Surprisingly, in all the detection criteria we have seen the likelihood ratio defined as,

\[\frac{P_{Y|x}(y | x_0)}{P_{Y|x}(y | x_1)} \]

seems to appear as a part of the decision rule.

For example, if \(C_{1,1} < C_{0,1} \), then we have,

\[\Gamma_1 = \{ y \in \mathbb{R}^N : \sum_{j=0}^{1} \pi_j C_{0,j} + \sum_{j=0}^{1} \pi_j (C_{1,j} - C_{0,j}) P_{Y|x}(y | x = x_j) > \tau P_{Y|x}(y | x_0) \} \]

where \(\tau = \frac{P_{X|x}(0)(C_{1,0} - C_{0,0})}{P_{X|x}(1)(C_{0,1} - C_{1,1})} \)

For \(C_{0,0} = C_{1,1} = 0 \) and \(C_{0,1} = C_{1,0} = 1 \), we get the MAP rule, i.e., \(\tau = \frac{P_{X|x}(0)}{P_{X|x}(1)} \) which minimizes average error probability.

2.2.5 Irrelevance and reversibility

An output may contain parts that do not help to determine the message. These irrelevant components can be discarded without loss of performance. This is illustrated in the following example.

Example 2.2.3. As shown Figure 2.16 if \(z_1 \) and \(z_2 \) are independent then clearly \(y_2 \) is irrelevant.

Theorem 2.2.2. If \(y = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} \), and we have either of the following equivalent conditions:

- \(P_{X|Y_1,Y_2} = P_{X|Y_1} \)
- \(P_{Y_2|Y_1,X} = P_{Y_2|Y_1} \)

then \(y_2 \) is irrelevant for the detection of \(X \).
2.2. DATA DETECTION

Proof: If \(P_{X|Y_1,Y_2} = P_{X|Y_1} \), then clearly the MAP decoding rule ignores \(Y_2 \), and therefore it is irrelevant almost by definition. The question is whether the second statement is equivalent. Let \(P_{Y_2|Y_1,X} = P_{Y_2|Y_1} \)

\[
\begin{align*}
P_{Y_2|Y_1} &\quad = \frac{P_{Y_1,Y_2}}{P_{Y_1}} \quad \quad (2.6) \\
P_{Y_2,Y_1|X} &\quad = \frac{P_{Y_1,Y_2|X}}{P_{Y_1|X}} \quad \quad (2.7)
\end{align*}
\]

Hence,

\[
\begin{align*}
P_{Y_2,Y_1,X} = P_{Y_2|Y_1} &\quad \iff \frac{P_{Y_1,Y_2}}{P_{Y_1}} &\quad = \quad \frac{P_{Y_1,Y_2|X}}{P_{Y_1|X}} \\
&\quad \iff \frac{P_{Y_1,Y_2|X}}{P_{Y_1,Y_2}} &\quad = \quad \frac{P_{Y_1,Y_2|X}}{P_{Y_1}} \\
&\quad \iff \frac{P_{Y_1,Y_2|X}}{P_{Y_1}} &\quad = \quad \frac{P_{Y_1,X}P_X}{P_{Y_2}} \\
&\quad \iff \frac{P_{X|Y_1,Y_2}}{P_{X|Y_1}} &\quad = \quad \frac{P_{X|Y_1}}{P_{X|Y_1}} \\
&\quad \iff \frac{P_{Y_1,Y_2|X}}{P_{Y_1}} &\quad = \quad \frac{P_{Y_2}}{P_{Y_2}} \\
&\quad \iff P_{X|Y_1,Y_2} &\quad = \quad P_{X|Y_1}
\end{align*}
\]

Note: The irrelevance theorem is summarized by a Markov chain relationship

\[X \leftrightarrow Y_1 \leftrightarrow Y_2 \]

which means that conditioned on \(Y_1, Y_2 \) is independent of \(X \).

Application of Irrelevance theorem

Theorem 2.2.3. (Reversibility theorem) The application of an invertible mapping on the channel output vector \(y \), does not affect the performance of the MAP detector.

Proof: Let \(y_2 \) be the channel output, and \(y_1 = G(y_2) \), where \(G(\cdot) \) is an invertible map. Then \(y_2 = G^{-1}(y_1) \). Clearly

\[
\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} y_1 \\ G^{-1}(y_1) \end{bmatrix}
\]

Figure 2.16: Example 2.2.3.
and therefore,
\[P_{X_1,Y_1,Y_2} = P_{X_1,Y_1} \]
and hence by applying the irrelevance theorem, we can drop \(y_2 \).

2.2.6 Complex Gaussian Noise

Let \(z \) be Real Gaussian noise i.e., \(Z = (z_1 \ldots z_n) \), and
\[
P_Z(z) = \frac{1}{(2\pi \sigma^2)^{N/2}} e^{-|z|^2/2\sigma^2}\]
Let Complex Gaussian random variable be \(Z^c = R + jI \). \(R, I \) are real and imaginary components, \((R, I)\) is jointly Gaussian.
\[
K = \begin{bmatrix}
E[R^2] & E[RI] \\
E[I\overline{R}] & E[I^2]
\end{bmatrix}
\]
\[
R_z^{(c)} = E[Z^c Z^{c*}] = E[|Z|^2] = E[R^2] + E[I^2]
\]
\[
\]
Circularly symetric Gaussian random variable:
\[
E[Z^{(c)} Z^{(c)*}] = 0 \iff E[R^2] = E[I^2] \\
E[R I] = 0
\]
For complex Gaussian random vectors:
\[
E[Z_i^{(c)} Z_j^{(c)*}] = E[R_i R_j] + E[I_i I_j] - j E[R_i I_j] - j E[R_j I_i]
\]
Circularly symmetric:
\[
E[Z_i^{(c)} Z_j^{(c)*}] = 0 \text{ for all } i, j.
\]
Complex noise processes arise due to passband systems, we will learn more on them shortly.

2.2.7 Continuous additive white Gaussian noise channel

Let us go through the entire chain for a continuous (waveform) channel.
Channel: \(y(t) = x(t) + z(t), t \in [0, T] \)
Additive White Gaussian Noise: Noise process \(z(t) \) is Gaussian and “white” i.e.,
\[
E[z(t)z(t-\tau)] = \frac{N_0}{2} \delta(\tau)
\]
Vector Channel Representation: Let the basis expansion and vector encoder be represented as,
\[
x(t) = \sum_{n=0}^{N-1} x_n \phi_n(t).
\]
Therefore, one can write,
\[
y(t) = \sum_{n=0}^{N-1} x_n \phi_n(t) + z(t)
\]
Let \(y_n = < y(t), \phi_n(t) >, \ z_n = < z(t), \phi_n(t) >, \ n = 0, \ldots, N - 1 \)

Consider vector model,
\[
\mathbf{y} = \begin{bmatrix}
 y_0 \\
 \vdots \\
 y_{N-1}
\end{bmatrix} = \mathbf{x} + \mathbf{z}
\]

Note:
\[
\hat{z}(t) \overset{df}{=} \sum_{n=0}^{N-1} z_n \phi_n(t) \neq z(t) \implies \hat{y}(t) \overset{df}{=} \sum_{n=0}^{N-1} y_n \phi_n(t) \neq y(t)
\]

Lemma 2.2.1. (Uncorrelated noise samples) Given any orthonormal basis functions \(\{ \phi_n(t) \} \), and white Gaussian noise \(z(t) \). The coefficients \(\{ z_n \} = < z, \phi_n > \) of the basis expansion are Gaussian and independent and identically distributed, with variance \(\frac{\sigma^2}{2} \), i.e. \(\mathbb{E}[z_n z_k] = \frac{\sigma^2}{2} \delta_{n-k} \).

Therefore, if we extend the orthonormal basis \(\{ \phi_n(t) \}_{n=0}^{N-1} \) to span \(\{ z(t) \} \), the coefficients of the expansion \(\{ z_n \}_{n=0}^{N-1} \) would be independent of the rest of the coefficients.

Let us examine,
\[
y(t) = \hat{y}(t) + \tilde{y}(t) = \sum_{n=0}^{N-1} (x_n + z_n) \phi_n(t) + z(t) - \tilde{z}(t)
\]

Therefore, in vector expansion, \(\hat{\mathbf{y}} \) is the vector containing basis coefficients from \(\phi_n(t), n = N, \ldots \)

These coefficients can be shown to be irrelevant to the detection of \(\mathbf{x} \), and can therefore be dropped. Hence for the detection process the following vector model is sufficient.

\[
\mathbf{y} = \mathbf{x} + \mathbf{z}
\]

Now we are back in “familiar” territory. We can write the MAP and ML decoding rules as before. Therefore the MAP decision rule is:
\[
H_{\text{MAP}}(\mathbf{y}) = \arg\min_i \left[\frac{||\mathbf{y} - \mathbf{x}_i||^2}{2\sigma^2} - \log[p_X(\mathbf{x}_i)] \right]
\]

And the ML decision rule is:
\[
H_{\text{ML}}(\mathbf{y}) = \arg\min_i \left[\frac{||\mathbf{y} - \mathbf{x}_i||^2}{2\sigma^2} \right]
\]

Let \(p_x(x_i) = \frac{1}{M} \) i.e. uniform prior.

Here \(ML \equiv MAP \equiv \text{optimal detector} \).

\[
P_e = \sum_{i=0}^{M-1} p_{e|x=x_i} p_x(x_i) = 1 - \sum_{i=0}^{M-1} p_{e|x=x_i} p_x(x_i)
\]

\[
P_{e,\text{uniform prior}} = \frac{1}{M} \sum_{i=0}^{M-1} p_{e,ML|x=x_i} = 1 - \frac{1}{M} \sum_{i=0}^{M-1} p_{e|x=x_i}
\]

The error probabilities depend on chosen signal constellation. More soon...
CHAPTER 2. SIGNALS AND DETECTION

2.2.8 Binary constellation error probability

\[Y = X_i + Z, \quad i = 0, 1, \quad Z \sim \mathcal{N}(0, \sigma^2 I_N) \]

Hence, conditional error probability is:

\[
P_{e,ML|Y=x_i} = P(|y - x_0| \geq |y - x_i|), \quad \text{since } y = x_0 + z, \quad (2.9)
\]

\[
\Rightarrow P_{e,ML|X=x_0} = P(|z| \geq |(x_0 - x_1) + z|)
\]

\[
= P(|z|^2 \geq |(x_1 - x_0) - z|^2)
\]

\[
= P(|z|^2 \geq |x_1 - x_0|^2 + |z|^2 - 2 < (x_1 - x_0), z >) \quad (2.10)
\]

\[
= P_{e,ML|Y=x_0} = P\left(\frac{|x_1 - x_0|^2}{2} > \frac{|y - x_0|^2}{2} \right)
\]

But \(< (x_1 - x_0), z > \) is a Gaussian i.e. \(U = \frac{(X_1 - X_0)^t Z}{||X_1 - X_0||} \) is Gaussian, with \(E[U] = 0, E[|U|^2] = \sigma^2 \)

\[
\Rightarrow P_{e,ML|X=x_0} = \int_{|X_1 - X_0|}^{\infty} \frac{1}{(2\pi \sigma^2)^{\frac{1}{2}}} e^{-\frac{1}{2\sigma^2}||U||^2} dU \quad (2.11)
\]

\[
= \int_{|X_1 - X_0|}^{\infty} \frac{1}{(2\pi \sigma^2)^{\frac{1}{2}}} e^{-\frac{||y||^2}{2\sigma^2}} dU \quad (2.12)
\]

\[
de\theta \equiv Q\left(\frac{|X_1 - X_0|}{2\sigma} \right) \quad (2.13)
\]

\[
\Rightarrow P_{e,ML} = P_{X|x_0} P(e, ML|X=x_0) + P_{X|x_1} P\{e, ML|X=x_1\} = Q\left(\frac{|X_1 - X_0|}{2\sigma} \right)
\]

2.3 Error Probability for AWGN Channels

2.3.1 Discrete detection rules for AWGN

AWGN Channel: \(Y = X + Z, \quad Y \in \mathbb{C}^N, \quad X \in \mathbb{C}^N, \quad Z \sim \mathbb{C}. \)

\[
\begin{array}{c}
X \\
\downarrow \\
Y
\end{array}
\]

Let \(p_x(x_i) = \frac{1}{M} \) i.e. uniform prior, hence the ML is equivalent to MAP detector.

Detection Rule:

\[
\Gamma_i = \{ y \in \mathbb{C}^N : ||y - x_i||^2 \leq ||y - x_j||^2, j \neq i \}
\]

\[
P_e = \sum_{i=0}^{M-1} P_{e|x=x_i} P_x(x_i) = 1 - \sum_{i=0}^{M-1} P_{e|x=x_i} P_x(x_i)
\]

\[
P_{e,ML}^{\text{uniform prior}} = \frac{1}{M} \sum_{i=0}^{M-1} P_{e,ML|x=x_i} = 1 - \frac{1}{M} \sum_{i=0}^{M-1} P_{e|x=x_i}
\]

Hence, for \(M > 2 \), the error probability calculation could be difficult. We will develop properties and bounds that might help in this problem.
2.3. ERROR PROBABILITY FOR AWGN CHANNELS

2.3.2 Rotational and translational invariance

Rotational Invariance

Theorem 2.3.1. If all the data symbols are rotated by an orthogonal transformation, i.e. $\tilde{X}_i = Qx_i$, $\forall i \in \{0, \ldots, M-1\}$, where $Q \in \mathbb{C}^{N \times N}$, $Q^*Q = I$, then the probability of error of the MAP/ML receiver remains unchanged over an AWGN channel.

Proof: Let

$$\tilde{Y} = \tilde{X} + Z$$ \hspace{1cm} (2.14)

$$\Rightarrow Q^*\tilde{Y} = Q^*\tilde{X} + Q^*Z$$ \hspace{1cm} (2.15)

$$\Rightarrow Y = X + Z$$

but \tilde{Z} is Gaussian (linear transformation of Gaussian Z) and $\mathbb{E}[ZZ^*] = Q^*\sigma^2IQ = \sigma^2I \Rightarrow \tilde{Z}$ is probabilistically equivalent to $Z \sim \mathcal{N}(0, \sigma^2I)$.

Hence (2.14) is the same as $\tilde{Y} = \tilde{X} + Z$ since Q is an invertible transform \Rightarrow Probability of error is unchanged.

Translational Invariance

If all data symbols in a signal constellation are translated by constant vector amount, i.e $\tilde{X}_i = X_i + a$, $\forall i$ then the probability of error of the ML decoder remains the same on an AWGN channel.

Minimum energy translate: Substract $\mathbb{E}[X]$ from every signal point. In other words, among equivalent signal constellations, a zero mean signal constellation has minimum energy.

2.3.3 Bounds for $M > 2$

As mentioned earlier, the error probability calculations for $M > 2$ can be difficult. Hence in this section we develop upper bounds for the error probability which is applicable for any constellation size M.

Theorem 2.3.2. Union bound

$$P_{e,ML|x=x_i} \leq \sum_{j \neq i} P_2(x_i, x_j)$$

$$= \sum_{j \neq i} Q \left(\frac{||x_i - x_j||}{2\sigma} \right)$$

$$P_{e,ML} \leq (M - 1)Q \left(\frac{d_{\text{min}}}{2\sigma} \right)$$ where $d_{\text{min}} \overset{def}{=} \min_{i \neq j} ||x_i - x_j||$
Proof: For \(x = x_i \), i.e. \(y = x_i + z \)

\[
P_{e,ML|x=x_i} = \mathbb{P} \left(\bigcup_{i \neq i} \{ ||y - x_i|| > ||y - x_j|| \} \right) \leq U_B \sum_{i \neq j} \mathbb{P} [||y - x_i|| > ||y - x_j||] = \sum_{i \neq j} P_2(x_i, x_j) \leq \sum_{i \neq j} Q \left(\frac{||x_i - x_j||}{2\sigma} \right) \leq (M - 1)Q \left(\frac{d_{\text{min}}}{2\sigma} \right)
\]

since \(Q(.) \) is a monotonously decreasing function. Therefore

\[
P_{e,ML} = \sum_{i=0}^{M-1} P_k(x_i) P(e, ML|x = x_i) \leq \sum_{i=0}^{M-1} P_k(x_i)(M - 1)Q \left(\frac{d_{\text{min}}}{2\sigma} \right) = (M - 1)Q \left(\frac{d_{\text{min}}}{2\sigma} \right)
\]

\[\square\]

Tighter Bound (Nearest Neighbor Union Bound)
Let \(N_i \) be the number of points sharing a decision boundary \(D_i \) with \(x_i \). Suppose \(x_k \) does not share a decision boundary with \(x_i \), but \(||y - x_i|| > ||y - x_k|| \) then \(\exists x_j \in D_i \) s.t. \(||y - x_i|| > ||y - x_j|| \) where \(D_i \) is a set of points sharing the same decision boundary. Hence

\[
\Pr[\bigcup_{j \neq i} \{ ||y - x_j|| < ||y - x_i|| \}] = \Pr[y \notin \Gamma_i]
\]

Figure 2.17: Decision regions for AWGN channel and error probability.
2.3. ERROR PROBABILITY FOR AWGN CHANNELS

Figure 2.18: Figure illustrating geometry when $x_k \in \mathcal{D}_i$, then there is a $x_j \in \mathcal{D}_i$ such that y is closer to x_i.

$$||y - x_k|| < ||y - x_i|| \Rightarrow \exists j \in \mathcal{D}_i \text{ such that } ||y - x_j|| < ||y - x_i||$$

$$\Rightarrow P[\bigcup_{j \neq i} \{||y - x_j|| < ||y - x_i||\}]$$

$$= P[\bigcup_{j \in \mathcal{D}_i} \{||y - x_j|| < ||y - x_i||\}]$$

$$\leq N_e Q\left(\frac{d_{\text{min}}}{2\sigma}\right)$$

$$P_{e,\text{ML}} = \sum_{i=0}^{M-1} P_x(x_i)P(\epsilon, \text{ML}|x = x_i)$$

$$\leq \sum_{i=0}^{M-1} P_x(x_i)Q\left(\frac{d_{\text{min}}}{2\sigma}\right) N_i$$

$$\Rightarrow P_{e,\text{ML}} \leq N_e Q\left(\frac{d_{\text{min}}}{2\sigma}\right) \text{ where } N_e = \sum_i N_i P_x(x_i)$$

Hence we have proved the following result,

Theorem 2.3.3. Nearest Neighbor Union bound (NNUB)

$$P_{e,\text{ML}} \leq N_e Q\left(\frac{d_{\text{min}}}{2\sigma}\right)$$

where

$$N_e = \sum N_i P_x(x_i)$$

and N_i is the number of constellation points sharing a decision boundary with x_i.
2.4 Signal sets and measures

2.4.1 Basic terminology

In this section we discuss the terminology used \(i.e.,\) the rate, number of dimensions etc. and discuss what would be fair comparisons between constellations.

If signal bandwidth is \(\text{approximately} W\) and is \(\text{approximately}\) time-limited to \(T\), then a deep theorem from signal analysis states that the space has dimension \(N\) which is

\[
N = 2WT
\]

If \(b\) bits are in a constellation in dimension \(N\).

\[
\Rightarrow \bar{b} = \frac{b}{N} = \# \text{ of bits/dimension}
\]

\[
R = \text{rate} = \frac{b}{T} = \# \text{ bits/unit time}
\]

\[
\overline{R W} = 2\bar{b} = \# \text{ bits/sec/Hz}
\]

\[
\overline{E_x} = \text{Average energy per dimension} = \frac{E_x}{N}
\]

\[
P_x = \text{Average power} = \frac{E_x}{T}
\]

\(\overline{E_x}\) useful in compound signal sets with different \(\#\) of dimension.

Signal to noise ratio (SNR)

\[
SNR = \frac{\overline{E_x}}{\sigma^2} = \frac{\text{Energy/dim}}{\text{Noise energy/dim}}
\]

Constellation figure of merit (CFM)

\[
\zeta_x \overset{\text{def}}{=} \frac{(d_{\min}/2)^2}{\overline{E_x}}
\]

As \(\zeta_x\) increases we get better performance (for same \(\#\) of bits per dimension only).

Fair comparison: In order to make a fair comparison between constellations, we need to make a multi-parameter comparison across the following measures.

- Data rate \((R)\) \(\text{bits/dim (}\bar{b}\))
- Power \((P_x)\) \(\text{Energy/dim (}\overline{E_x}\))
- Total BW \((W)\) \text{OR} Normalized probability of error \((\overline{P}_e)\)
- Symbol period \((T)\)
- Error probability \((P_e)\)
2.4. signal sets and measures

2.4.2 signal constellations

Cubic constellations

\[\mathbf{z} = \sum_{i=0}^{N-1} U_i e_i \]

where \(N \) is the number of dimensions, and \(e_i \in \mathbb{R}^N \) is,

\[e_i(k) = \begin{cases} 1 & \text{if } k = i \\ 0 & \text{else} \end{cases} \]

where \(U_i \in \{0,1\} \) depending on “bit sequence”. Hence the number of constellation points is, \(M = 2^N \).

Orthogonal constellations

\(M = \alpha N \). Example: Bi-orthogonal signal set \(M = 2N \) and \(x_i = \pm e_i \Rightarrow 2N \) signal points.

Circular constellations

\(M^{th} \) root of unity

Example 2.4.1. Quadrature Phase-Shift Keying (QPSK):

\[\begin{align*}
\phi_1(t) &= \sqrt{\frac{2}{T}} \cos\left(\frac{2\pi t}{T}\right) \quad 0 \leq t \leq T, \\
\phi_2(t) &= \sqrt{\frac{2}{T}} \sin\left(\frac{2\pi t}{T}\right) \quad 0 \leq t \leq T
\end{align*} \]
The constellation consists of \(\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \), where \(x_i \in \{-\sqrt{\frac{E}{2}}, \sqrt{\frac{E}{2}}\} \)

\[\Rightarrow d_{\text{min}}^2 = 2E, \quad \zeta = \frac{\sqrt{2E}}{\sqrt{2}} = 1. \]

Note that, \(d_{\text{min}}^2 = 4E \) for BPSK.

Error Probability:

\[P_{\text{correct}} = \sum_{i=0}^{3} P_{\text{correct}|i}|P_x(i) = P_{\text{correct}|0} \]

\[= [1 - Q\left(\frac{d_{\text{min}}}{2\sigma}\right)]^2 \]

\[\Rightarrow P_{\text{error}} = 2Q\left(\frac{d_{\text{min}}}{2\sigma}\right) - [Q\left(\frac{d_{\text{min}}}{2\sigma}\right)]^2 < 2Q\left(\frac{d_{\text{min}}}{2\sigma}\right) \rightarrow \text{NUB} \]

Where \(2Q\left(\frac{d_{\text{min}}}{2\sigma}\right) \) is the NUB. Hence for \(d_{\text{min}} \) reasonably large the NUB is tight.

Example 2.4.2. M-ary Phase-Shift Keying (MPSK)

\[d_{\text{min}} = 2\sqrt{E}\sin\left(\frac{\pi}{M}\right), \quad \zeta = \frac{\left[2\sqrt{E}\sin\left(\frac{\pi}{M}\right)\right]^2}{\frac{2}{\pi}} = 2\sin^2\frac{\pi}{M} \]

Error Probability: \(P_e < 2Q\left(\sqrt{E}\sin\left(\frac{\pi}{M}\right)\right) \)

2.4.3 Lattice-based constellation:

A lattice is a “regular” arrangement of points in an \(N \)-dimensional space.

\[\mathbf{x} = \mathbf{G}a, \text{ } a_i \text{ in } \mathbb{Z} \]

where \(\mathbf{G} \in \mathbb{R}^{N \times N} \) is called the generator matrix.
Example 2.4.3. Integer lattice: $G = I \Rightarrow x \in \mathbb{Z}^N$
If $N=1$ we get the “Pulse Amplitude Modulation” (PAM) constellation.
For this, $E_x = \frac{d^2}{12}(M^2 - 1)$. Thus,

$$d_{\text{min}}^2 = \frac{12E_x}{M^2 - 1}, \quad \zeta_x = \frac{3E_x}{M^2 - 1}$$

![Figure 2.20: PAM constellation.](image)

Error Probability:

$$P_{\text{correct}} = \frac{M - 2}{M} \lfloor 1 - 2Q\left(\frac{d_{\text{min}}}{2}\right) \rfloor + \frac{1}{M} \lfloor 1 - Q\left(\frac{d_{\text{min}}}{2}\right) \rfloor$$

$$\Rightarrow P_e = 2\left(1 - \frac{1}{M}\right)Q\left(\frac{d_{\text{min}}}{2}\right)$$

Number of nearest neighbors: $N_j = 2$ for interior points, and $N_j = 1$ for end points.

$$N_e = \frac{M - 2}{M} - 2 + \frac{2}{M} = 2\left(1 - \frac{1}{M}\right)$$

Note: Hence NNUB is exact.

Curious fact: For a given minimum distance d,

$$M^2 = 1 + \frac{12E_x}{d^2}$$

$$\Rightarrow b = \log M = \frac{1}{2} \log \left(1 + \frac{12E_x}{d^2}\right)$$

Is this familiar? If so, is this a coincidence? More about this later...

Other lattice based constellations

Quadrature Amplitude Modulation (QAM): “Cookie-slice” of 2-dimensional integer lattice. Other constellations are carved out of other lattices (e.g. hexagonal lattice).

Other performance measures of interest

- Coding gain: $\gamma = \frac{\zeta_x}{\zeta}$
- Shaping gain of lattice.
- Peak-to-average ratio.
Chapter 3
Passband Systems

In most communication systems the transmission occurs at a frequency band which is not at base band, but centered at a higher frequency. An example is that of wireless transmission, where the signal is centered around 1GHz or more. Other examples include TV broadcast, cordless phones, satellite communication, etc. In order to understand transmission over such channels we study representations of passband systems.

3.1 Equivalent representations

Let carrier modulated signal \(x(t) \) be given by,
\[
x(t) = a(t) \cos(\omega_c t + \theta(t))
\]
the quadrature decomposition is
\[
x(t) = x_I(t) \cos(\omega_c t) - x_Q(t) \sin(\omega_c t)
\]
Thus, \(a(t) = \sqrt{x_I^2(t) + x_Q^2(t)} \), \(\theta(t) = \tan^{-1} \left[\frac{x_Q(t)}{x_I(t)} \right] \).
The baseband-equivalent signal is
\[
x_{bb}(t) \overset{def}{=} x_I(t) + jx_Q(t) \tag{3.1}
\]
Note that in (3.1) there is no reference to ω_c.
The analytic equivalent signal is,

$$ x_A(t) = x_{bb}(t)e^{j\omega_c t} $$

Hence,

$$ x(t) = \text{Re}[x_A(t)] $$

Let

$$ \tilde{x}(t) = \text{Im}[x_A(t)] $$

Then

$$ x_{bb}(t) = x_A(t)e^{-j\omega_c t} = [x(t) + j\tilde{x}(t)]e^{-j\omega_c t} $$

Hence

$$ x_{bb}(t) = \frac{[x(t)\cos(\omega_c t) + \tilde{x}(t)\sin(\omega_c t)] + j[x(t)\cos(\omega_c t) - \tilde{x}(t)\sin(\omega_c t)]}{x_I(t)} $$

Representation of passband signals Equivalent representations for $x(t) = a(t)\cos[\omega_c(t) + \theta(t)]$ are,

1. Magnitude and phase: $a(t), \theta(t)$
2. In-phase and quadrature phase: $x_I(t), x_Q(t)$
3. Complex baseband equivalent: $x_{bb}(t)$
4. Analytic signal: $x_A(t)$

3.2 Frequency analysis

We assume that the signal bandwidth is such that

$$ \begin{cases}
X_Q(\omega) = 0 \\
X_I(\omega) = 0
\end{cases} \quad |\omega| > \omega_c $$

$$ x_A(t) = x_{bb}(t)e^{j\omega_c t} = x(t) + j\tilde{x}(t) $$

Now

$$ F[x(t)] = F[x_I(t)\cos \omega_c t - x_Q(t)\sin \omega_c t] $$

Where $F(\cdot)$ is the Fourier transform.

Hence

$$ X(\omega) = \frac{1}{2} \left[X_I(\omega - \omega_c) - \frac{1}{2}j \left(X_Q(\omega - \omega_c) - X_Q(\omega + \omega_c) \right) \right] $$

$$ X(\omega) = \frac{1}{2} \left[X_I(\omega + \omega_c) + \frac{1}{2}j \left(X_Q(\omega + \omega_c) - X_Q(\omega - \omega_c) \right) \right] $$

Let $\text{sgn}(x)$ be the function as defined in Figure 3.2.
3.2. FREQUENCY ANALYSIS

\[sgn(x) = \begin{cases}
1, & x > 0 \\
0, & x = 0 \\
-1, & x < 0
\end{cases} \]

Figure 3.2: The \(sgn(\cdot) \) function.

Now consider

\[
-j sgn(\omega) X(\omega) = \frac{-j}{2} [X_I(\omega - \omega_c) - X_I(\omega + \omega_c)] + \frac{j}{2j} [X_Q(\omega - \omega_c) + X_Q(\omega + \omega_c)] \\
= \frac{1}{2j} [X_I(\omega - \omega_c) - X_I(\omega + \omega_c)] + \frac{1}{2} [X_Q(\omega - \omega_c) + X_Q(\omega + \omega_c)]
\]

Therefore

\[
\mathcal{F}^{-1} \{-j sgn(\omega) X(\omega)\} = x_I(t) \sin \omega_c t + x_Q(t) \cos \omega_c t = \text{Im}[x_A(t)] \\
\Rightarrow \mathcal{F} \{\text{Im}[x_A(t)]\} = \mathcal{F}[x(t)] = \hat{X}(\omega) = -j sgn(\omega) X(\omega)
\]

Hence we have

\[
X_A(\omega) = X(\omega) + j(-j sgn(\omega)) X(\omega) = [1 + sgn(\omega)] X(\omega)
\]

Fourier relationships:

\[
x(t) = x_I(t) \cos \omega_c t - x_Q(t) \sin \omega_c t
\]

\[
x(t) \quad \overset{\mathcal{F}}{\leftrightarrow} \quad X(\omega)
\]

\[
x_{bb}(t) = x_I(t) + j x_Q(t) \quad \overset{\mathcal{F}}{\leftrightarrow} \quad X_{bb}(\omega)
\]

\[
x_A(t) = x_{bb}(t) e^{j \omega_c t} \quad \overset{\mathcal{F}}{\leftrightarrow} \quad X_{bb}(\omega - \omega_c) = X_A(\omega) = [1 + sgn(\omega)] X(\omega)
\]

\[
\Rightarrow \quad X_{bb}(\omega - \omega_c) = [1 + sgn(\omega)] X(\omega)
\]

or \[
X_{bb}(\omega) = [1 + sgn(\omega + \omega_c)] X(\omega + \omega_c) = X_A(\omega + \omega_c)
\]
3.3 Channel Input-Output Relationships

Given a passband channel $H(\omega)$, we can rewrite the channel output as,

$$Y(\omega) = H(\omega)X(\omega)$$

$$\Rightarrow Y(\omega)[1 + \text{sgn}(\omega)] = H(\omega)[1 + \text{sgn}(\omega)]X(\omega)$$

$$Y_A(\omega) \overset{(a)}{=} H(\omega)X_A(\omega)$$

$$Y_A(\omega) \overset{(b)}{=} \frac{1}{2}[1 + \text{sgn}(\omega)]H(\omega)X_A(\omega)$$

$$\Rightarrow Y_A(\omega) = \frac{1}{2}H_A(\omega)X_A(\omega)$$

Where (a) follows from derivation of $X_A(\omega)$, (b) is because $X_A(\omega)$ is non-zero only for $\omega \geq 0$ and hence $\frac{1}{2}[1 + \text{sgn}(\omega)] = 1$ for these frequencies. Now,

$$Y_{bb}(\omega) = Y_A(\omega + \omega_c) = \frac{1}{2}H_A(\omega + \omega_c)X_A(\omega + \omega_c)$$

$$Y_{bb}(\omega) = \frac{1}{2}H_{bb}(\omega)X_{bb}(\omega)$$

Also,

$$Y_{bb}(\omega) = H(\omega + \omega_c)X_{bb}(\omega) \text{ for } \omega > -\omega_c$$

Figure 3.3: Passband and baseband signal representation.

Figure 3.4: Representation for passband channels.
3.4 BASEBAND EQUIVALENT GAUSSIAN NOISE

Let the noise process be $z(t)$.

$S_z(\omega) = \mathbb{E}[|Z(\omega)|^2] = \left\{ \begin{array}{ll} \frac{N_0}{2} & \omega - W < |\omega| < \omega_c + W \\ 0 & \text{elsewhere} \end{array} \right.$

![Figure 3.6: Bandlimited noise spectral density.](image)

We can write,

$$z_A(t) = z(t) + j\tilde{z}(t).$$

The correlation function is,

$$\mathbb{E}[z(t)z(t-\tau)] = r_z(\tau)$$

SUMMARY of signal representations.

Passband

$$y(t) = x(t) * h(t)$$

$$Y(\omega) = X(\omega)H(\omega)$$

Analytic equivalent

$$y_A(t) = x_A(t) * \frac{1}{2} h_A(t)$$

$$Y_A(\omega) = X_A(\omega)H(\omega) = X_A(\omega)\frac{1}{2} H_A(\omega)$$

Baseband

$$y_{bb}(t) = x_{bb}(t) * \frac{1}{2} h_{bb}(t)$$

$$Y_{bb}(\omega) = X_{bb}(\omega)H(\omega + \omega_c)$$

Figure 3.5: Representation with baseband signals.
Hence the power spectral density $S_z(\omega)$ is given by,

$$S_z(\omega) = \mathcal{F}\{r_z(\tau)\}$$

Note that formally $S_z(\omega) = \mathbb{E}[|Z(\omega)|^2]$, though these are technicalities which make this a formal rather than a precise relationship. Therefore,

$$\mathbb{E}[|\hat{Z}(\omega)|^2] = \mathbb{E}[|Z(\omega)|^2] = S_z(\omega)$$

Hence we get the fact that

$$r_z(\tau) = r_z(\tau)$$

almost everywhere (i.e., except over a set of measure zero). Now let the Hilbert transform $h(t)$ be,

$$\mathcal{H}(w) = j \text{sgn}(w)$$

$$\mathcal{F}^{-1}h(t) = \begin{cases} \frac{1}{\pi} & t \neq 0 \\ 0 & t = 0 \end{cases}$$

Hence we have,

$$\hat{z}(t) = h(t) * z(t)$$

Now,

$$r_{zz} = \mathbb{E}[z(t)\hat{z}(t - \tau)] = -h(\tau) * r_z(\tau) = -\hat{r}_z(\tau)$$

$$r_{z*} = \mathbb{E}[\hat{z}(t)z^*(t - \tau)] = h(\tau) * r_z(\tau) = \hat{r}_z(\tau)$$

Hence for,

$$z_A(t) = z(t) + j\hat{z}(t)$$

We have 1,

$$r_{z_A}(\tau) = \mathbb{E}[z_A(t)z_A^*(t - \tau)]$$

$$= \mathbb{E}[z(t)z^*(t - \tau)] - j2\mathbb{E}[z(t)\hat{z}^*(t - \tau)] + \mathbb{E}[\hat{z}(t)z^*(t - \tau)] - j2\mathbb{E}[\hat{z}(t)\hat{z}(t - \tau)]$$

$$= r_z(\tau) - j(\hat{r}_z(\tau)) + j\hat{r}_z(\tau) + r_z(\tau)$$

Therefore we get,

$$r_{z_A}(\tau) = 2[r_z(\tau) + j\hat{r}_z(\tau)]$$

which implies

$$\mathcal{F}[r_{z_A}(\tau)] = S_{z_A}(\omega)$$

$$= 2[1 + \text{sgn}(\omega)]S_z(\omega)$$

$$= \begin{cases} 4S_z(\omega) & \omega > 0 \\ 0 & \text{elsewhere} \end{cases}$$

1We denote the complex conjugate by Z^*.
This gives us
\[S_{zA}(\omega) = 4S_z(\omega) \] for \(\omega > 0 \)
that is,
\[S_{zA}(\omega) = \begin{cases}
2N_0 & \omega_c - W \leq \omega \leq \omega_c + W \\
0 & \text{elsewhere}
\end{cases} \]

Since \(z_A(t) = zbb(t)e^{j\omega_c t} \), this implies that \(r_{zA}(\tau) = r_{zbb}(\tau)e^{j\omega_c \tau} \), and we get (3.3),
\[S_{zbb}(\omega) = S_{zA}(\omega + \omega_c) \]
\[\Rightarrow S_{zbb}(\omega) = \begin{cases}
2N_0 & |\omega| < W \\
0 & \text{elsewhere}
\end{cases} \] (3.3)

Here is where the messy factor of 2 arises!

\[\begin{array}{c}
\text{z(t)} \\
\downarrow \\
\text{z(t)}
\end{array} \]
\[\begin{array}{c}
\text{\downarrow} \\
\times
\end{array} \]

Figure 3.7: The factor of two in noise process.

Define,
\[\tilde{z}(t) = \frac{1}{\sqrt{2}}z(t) \]
\[\Rightarrow S_{\tilde{z}}(\omega) = \begin{cases}
\frac{N_0}{4} & |\omega| < \omega_c + W \\
0 & \text{elsewhere}
\end{cases} \]
\[\Rightarrow S_{\tilde{z}A}(\omega) = \begin{cases}
N_0 & \omega_c - W \leq \omega \leq \omega_c + W \\
0 & \text{elsewhere}
\end{cases} \]

and
\[\Rightarrow S_{\tilde{z}bb}(\omega) = \begin{cases}
N_0 & |\omega| < W \\
0 & \text{elsewhere}
\end{cases} \]

giving the same energy as the passband noise spectrum.

Example 3.4.1. Let
\[x_{bb}(t) = \sqrt{2}(x_1 + jx_2)\varphi(t) \]
if
\[x(t) = x_1\varphi_1(t) + x_2\varphi_2(t) \]
where,
\[\varphi_1(t) = \sqrt{2}\varphi(t)\cos\omega_c t \]
\[\varphi_2(t) = -\sqrt{2}\varphi(t)\sin\omega_c t \]

If \(\varphi(t) \) is normalized, i.e. \(||\varphi|| = 1 \), then if
\[\varphi_1(t) = \sqrt{2}\varphi(t)\cos\omega_c t, \quad \varphi_2(t) = \sqrt{2}\varphi(t)\sin\omega_c t \]
\[H(w + w_c) + S_n(f) = N_0/2 \]

Figure 3.8: Representation of additive noise channel.

\[\Rightarrow ||\varphi_1|| = ||\varphi_2|| = 1 \]

So under modulation \(\sqrt{2} \) factor is needed.

Verification: Let us verify that indeed \(\varphi_1 \) and \(\varphi_2 \) are normalized.

\[\Phi_1(\omega) = \sqrt{2}\frac{1}{2}\Phi(\omega - \omega_c) + \frac{1}{2}\Phi(\omega + \omega_c)] = \frac{1}{\sqrt{2}}[\Phi(\omega - \omega_c) + \Phi(\omega + \omega_c)], \]

where \(\Phi_i(\omega) = \mathcal{F}(\varphi_i), i = 1, 2 \). Hence, it is normalized, i.e.,

\[||\Phi_1|| = \frac{1}{2}||\Phi|| + ||\Phi|| = 1 \]

Note: Scaling is really for analytical convenience, since scaling does not change SNR since it is after received signal.

Therefore to be precise when \(X_A(w) = [1 + sgn(w)]X(w) \)

\[\Rightarrow X_A(\omega) = \begin{cases} 2X(\omega) & \omega > 0 \\ X(\omega) & \omega = 0 \\ 0 & \omega < 0 \end{cases} \]

3.5 Circularly symmetric complex Gaussian processes

Let \(Z = R + jI \) where \(I \) and \(R \) denote real and imaginary components respectively.

\(Z \) complex Gaussian \(\Rightarrow R, I \) are jointly Gaussian

Now if we think of \(\begin{pmatrix} R \\ I \end{pmatrix} \) as a vector then

\[\mathbb{E}\left[\begin{pmatrix} R \\ I \end{pmatrix} \begin{pmatrix} R & I \end{pmatrix} \right] = \begin{pmatrix} \mathbb{E}[R^2] & \mathbb{E}[RI] \\ \mathbb{E}[IR] & \mathbb{E}[I^2] \end{pmatrix} \]
Note that since $E[IR] = E[RI]$, there are three degrees of freedom. Let

$$ R_z = E[ZZ^*] = E[R^2] + E[I^2] $$

Clearly this has only one degree of freedom. Hence, this is not sufficient to specify the Gaussian random variable Z.

Define

$$ \tilde{R}_z = E[ZZ] = E[R^2] - E[I^2] + 2jE[RI] $$

Thus we have 2 degrees of freedom here.

Definition 3.5.1. *Circularly symmetric complex Gaussian variables.* A random variable Z is circularly symmetric iff $\tilde{R}_z = 0$, i.e.

$$ \begin{align*}
E[R^2] &= E[I^2] \\
E[RI] &= 0
\end{align*} $$

This can be generalized to vectors,

$$ Z = \begin{bmatrix}
 z_1 \\
 \vdots \\
 z_N
\end{bmatrix} \in \mathbb{C}^N $$

is a complex Gaussian circularly symmetric random variable, iff,

$$ E[ZZ^*] = 0 $$

This implies,

$$ E[z_i z_j] = 0 \forall i, j $$

Therefore the complex covariance matrix R_z for zero mean random variables is,

$$ R_z = E[zz^*] $$

Complex Gaussian vectors The probability density function (pdf) is,

$$ P_z(z) = \frac{1}{|\pi R_z|} e^{-(z-\mu)^* R_z^{-1} (z-\mu)} $$

where $E[z] = \mu$, and $R_z = E[(z - \mu)(z - \mu)^*]$.

3.5.1 Gaussian hypothesis testing - complex case

$$ y = x + z $$

where $x, y, z \in \mathbb{C}^N$ and z is a circularly symmetric complex Gaussian random vector with $R_z = \sigma^2 I$.
\[\mu = 0. \]

\[H_{\text{MAP}}(y) = \arg \max_i \mathbb{P}_{x|y}(x_i|y) \]
\[= \arg \max_i \mathbb{P}_x(x_i) \mathbb{P}_{y|x}(y|x_i) \]
\[= \arg \max_i \mathbb{P}_x(x_i) \mathbb{P}_z(y - x_i) \]
\[= \arg \max_i \mathbb{P}_x(x_i) \frac{1}{(2\pi \sigma^2)^N} e^{-\frac{\|y - x_i\|^2}{\sigma^2}} \]
\[= \arg \max_i \left[\ln \mathbb{P}_x(x_i) - \frac{\|y - x_i\|^2}{\sigma^2} \right] \]
\[= \arg \max_i \left[\ln \mathbb{P}_x(x_i) - \frac{\|y\|^2}{\sigma^2} - \frac{\|x_i\|^2}{\sigma^2} + \frac{2R < y, x_i >}{\sigma^2} \right] \]
\[\Rightarrow H_{\text{MAP}}(y) = \arg \max_i \left[\ln \mathbb{P}_x(x_i) + \frac{2R < y, x_i >}{\sigma^2} - \frac{\|x_i\|^2}{\sigma^2} \right] \]

where \(< y, x > = y^* x \)

Similarly

\[H_{\text{ML}}(y) = \arg \max_i [-\|y - x_i\|^2] \]
\[= \arg \max_i [2R < y, x_i > - \|x_i\|^2] \]
\[= \arg \min_i [\|y - x_i\|^2] \]
Part II

Transmission over Linear Time-Invariant channels
Chapter 4

Inter-symbol Interference and optimal detection

The main focus till now was one “one-shot” transmission, i.e., transmission of one of M messages using a N dimensional symbol. Typically, a transmission system sends a sequence of messages. If the channel is memoryless, i.e., successive transmissions do not interfere with each other, then the analysis up to now is sufficient. More formally, a channel is memoryless if

$$P(y_1, y_2, \ldots, y_t|x_1, x_2, \ldots, x_t) = \prod_{k=1}^{t} P(y_k|x_k)$$

where $\{y_k\}_{k=1}^{t}$ are symbols received over t successive time periods. In practice, symbols do interfere with each other causing Inter-Symbol-Interference (ISI).

4.1 Successive transmission over an AWGN channel

First, let us examine successive transmission over a memoryless AWGN channel. If we reuse the channel we send one out of M messages every T seconds. If T is the symbol period then $\frac{1}{T}$ is the symbol rate. Then the data rate R is defined as

$$R \overset{def}{=} \frac{\log_2 M}{T} \text{ bits/second}.$$

In order to transmit k successive messages, we send

$$x(t) = \sum_{k=0}^{K-1} x_k(t - kT) \quad (4.1)$$

where k indicates time index (i.e., message transmitted at kth time instant). We also define

$$x_k(t) = \sum_{n=0}^{N-1} x_{k,n}\phi_n(t)$$

Therefore, now the basis expansion has two indices, one indicating the symbol time and other for the basis coefficient, for the symbol time. One can form the optimal receiver by thinking of (4.1) as a one-shot problem with M^k possible messages and therefore decode optimally. If the channel is memoryless, the
problem decouples and instead of M^k, we get k, M-dimensional independently solvable problems and the dimensionality of the problem does not go up exponentially i.e., the complexity does not grow as M^k.

Notes:

1. Even though $\langle \varphi_n, \varphi_k \rangle = \delta_{n-k}$, $\langle \varphi_n(t - kT), \varphi_k(t - lT) \rangle$ need not be δ_{n-k} for $k \neq l$.

 However, if $\langle \varphi_n(t - kT), \varphi_k(t - lT) \rangle = \delta_{n-k}$ again the problem decouples and we can do “symbol-by-symbol” detection.

2. The inherent assumption is that the successive messages are independent. However, if there is dependence, then clearly “symbol-by-symbol” detection is not optimal even for memoryless channels.

4.2 Inter-symbol Interference channel

The inter-symbol interference channel we will focus on is illustrated in Figure 4.1.

![Figure 4.1: The inter symbol interference channel.](image)

The transmitted waveform is,

\[
\tilde{x}(t) = \sum_{k=0}^{K-1} \sum_{n=0}^{N-1} x_{k,n} \left[\varphi_n(t - kT) * h(t) \right] \tag{4.2}
\]

and the received waveform is with Gaussian noise,

\[
\tilde{y}(t) = \tilde{x}(t) + z(t) = \sum_{k=0}^{K-1} \sum_{n=0}^{N-1} x_{k,n} \left[\varphi_n(t - kT) * h(t) \right] + z(t),
\]

where $z(t)$ is additive Gaussian noise.

Therefore the n^{th} pulse response is,

\[
p_n(t) = \varphi_n(t) * h(t)
\]

Definition 4.2.1. We define the normalized pulse response $\tilde{\varphi}_n(t)$ as,

\[
\tilde{\varphi}_n(t) = \frac{p_n(t)}{||p_n||}
\]

where $||p_n|| = \langle p_n, p_n \rangle^{1/2}$.
4.2. INTER-SYMBOL INTERFERENCE CHANNEL

Hence, we can rewrite the transmitted waveform as,

\[\tilde{x}(t) = \sum_{k=0}^{K-1} \sum_{n=0}^{N-1} x_{k,n} |p| \tilde{\varphi}_n(t-kT) \]

Now consider an isolated symbol transmitted over the channel, i.e., not successive transmission. This means that \(x_k = x_0 \delta(k) \), and the waveform \(y(t) \) is observed in order to detect \(x_0 \). Therefore, this “one-shot” transmission specifies a lower bound to the error probability of i.i.d. symbols. Therefore the SNR of this channel is an upper bound to the SNR of successive data transmission over the ISI channel. Therefore, this is called the matched filter bound.

Definition 4.2.2. The \(SNR_{MFB} \) is the SNR of a single shot transmission over the channel given in (4.2) and is given by,

\[SNR_{MFB} = \frac{\mathcal{E}_x |p|^2}{N_0}, \]

(4.3)

where \(\mathcal{E}_x = E[||x_k||^2] \) and \(N_0 = E[|z(t)|^2] \).

The main question we first address is, what should the optimum receiver structure be for successive transmission over the channel given in Figure 4.1. In the sequel, we consider \(N = 1 \) for simplicity. Hence we will drop the subscript from \(\varphi_n(t) \) and use it as \(\varphi(t) \). Clearly all the discussion can be extended to the case when \(N > 1 \) complex dimensions.

4.2.1 Matched filter

In this section we derive a set of sufficient statistics for the ISI channel.

Theorem 4.2.1. The set of discrete-time samples \(\{y(kT)\}_{k \in \{-\infty, \infty\}} \) where \(y(kT) = \tilde{y}(t) * \tilde{\varphi}^*(-t)|_{t=kT} \) are a set of sufficient statistics for the detection of \(\{x_k\} \) over a continuous-time ISI channel whose output is \(\tilde{y}(t) \), i.e.,

\[\tilde{y}(t) = h(t) * \sum_n x_k \varphi(t-nT) + \frac{z(t)}{\mathcal{E}_x} \]

and \(\varphi(t) \overset{df}{=} \frac{h(t) * \varphi(t)}{||h \varphi||} \)

Notes:

1. Here we have assumed \(N = 1 \), and hence the subscript of \(\varphi \) has been dropped for convenience.
2. The result indicates that the following detector structure incurs no loss of optimality.
CHAPTER 4. INTER-SYMBOL INTERFERENCE AND OPTIMAL DETECTION

Proof: Consider the following problem

\[\tilde{y}(t) = \sum_k x_k ||p|| \tilde{\varphi}(t - kT) + z(t), \ t \in (-\infty, \infty) \]

This is like transmitting symbols \{\tilde{x}_k\}, where \(\tilde{x}_k = x_k ||p|| \) using modulating functions \{\tilde{\varphi}_k(t)\}

\[\tilde{\varphi}_k(t) = \tilde{\varphi}(t - kT) \] \hspace{1cm} (4.4)

We can use a Gram-Schmidt orthogonalization process, for example, to create an orthonormal basis for the space spanned by \{\tilde{\varphi}_k\}. We can call this orthonormal basis \{\tilde{\psi}_k\} which can be obtained by an invertible transformation \(\Gamma \). That is

\[\{\tilde{\psi}_k\} = \Gamma(\{\tilde{\varphi}_k\}) \]
\[\{\tilde{\varphi}_k\} = \Gamma^{-1}(\{\tilde{\psi}_k\}) \]

Therefore one can write

\[\tilde{y}(t) = \sum_k u_k \tilde{\psi}_k(t) + z(t) \] \hspace{1cm} (4.5)

where \(\{u_k\} \) is the coefficients of \(\sum_k x_k \tilde{\varphi}_k(t) \) in the new basis. From “single shot” transmission, we know that for white Gaussian noise, the optimal receiver projects onto the orthonormal basis directions, i.e., \(\langle \tilde{y}, \tilde{\psi}_k \rangle \) form a set of sufficient statistics for detecting \(\{u_k\} \).

Now if we apply an invertible transform \(\Gamma^{-1} \) to recover \(\{u_k\} \) expressed in their orthogonal basis \{\varphi_k\} (which may not be orthonormal), then we obtain \(\langle \tilde{y}, \tilde{\varphi}_k \rangle \) as the set of outputs we process. In other words, \(\{u_k\} \) expresses \(\tilde{x}(t) \) in terms of the basis \{\tilde{\varphi}_k\} (see (4.5) above), and we can do a change of basis to express \(\tilde{x}(t) \) in terms of \{\tilde{\varphi}_k\} which yields the basis coefficients \(\langle \tilde{y}, \tilde{\varphi}_k \rangle \). Since, the transform is invertible, by the reversibility theorem we are done.

Alternate (more explicit) proof:

Let us consider a finite number of transmissions, i.e., \(k = 0, \ldots, K - 1 \).

\[\tilde{y}(t) = \sum_{k=0}^{K-1} x_k ||p|| \tilde{\varphi}(t - kT) + z(t), \ t \in (-\infty, \infty) \]

Optimal receiver projects onto subspace spanned by signal when noise is white. That is, let \(\tilde{y}_E = \mathcal{P}(\tilde{y}) \), where \(\mathcal{P} \) projects onto the signal space. Therefore the projections are,

\[\langle \tilde{y}, \sum x_k ||p|| \tilde{\varphi}_k \rangle = \sum \langle \tilde{y}, \tilde{\varphi}_k \rangle (x_k ||p||) \]

Hence,

\[y_k \equiv \langle \tilde{y}, \tilde{\varphi}_k \rangle = \tilde{y}(t) \tilde{\varphi}_k(-t)|_{t=kT} \]

form a set of sufficient statistics.

4.2.2 Noise whitening

As a result of the matched filtering operation illustrated in Figure 4.2, the noise observed after sampling need not be white. Consider the output of the matched filter which projects the signal onto the basis, i.e.,

\[y(kT) \equiv \langle \tilde{y}, \tilde{\varphi}_k \rangle \]
Let us define,

\[
y(kT) \stackrel{def}{=} y_k = \sum_n x_n |p| < \hat{\varphi}_n, \hat{\varphi}_k > + < z, \hat{\varphi}_k > \tag{4.6}
\]

Now,

\[
< \hat{\varphi}_n, \hat{\varphi}_k > = \int \hat{\varphi}(t-nT)\hat{\varphi}^*(t-kT)dt \\
= \int \hat{\varphi}(t)\hat{\varphi}^*(t-(k-n)T)dt
\]

Hence

\[
< \hat{\varphi}_n, \hat{\varphi}_k > = < \hat{\varphi}_0, \hat{\varphi}_{k-n} >
\]

Let

\[
q_l = < \hat{\varphi}_0, \hat{\varphi}_l >
\]

Clearly \(q_l^* = q_{-l}\) and hence \(\{q_l\}\) has conjugate symmetry.

From (4.6),

\[
y_k = \sum_n \hat{x}_n q_{k-n} + < z, \hat{\varphi}_k > \\
= \sum_n \hat{x}_{n-k} q_k + < z, \hat{\varphi}_k >
\]

Consider the noise process

\[
z_n \stackrel{def}{=} < z, \hat{\varphi}_n >
\]

The spectrum of this noise is,

\[
E[z_n, z_{n-k}^*] = E \left[\int \int \{z(t)\hat{\varphi}^*(t-nT)dt\} \{z^*(t)\hat{\varphi}(\tau-(n-k)T)d\tau\} \right] \\
= \int_t \int_\tau \hat{\varphi}^*(t-nT)\hat{\varphi}(\tau-(n-k)T)E[z(t)z^*(\tau)]dtd\tau \\
= \int_t \int \hat{\varphi}^*(t-nT)\hat{\varphi}(\tau-(n-k)T)N_0\delta(t-\tau)dtd\tau \\
= N_0 \int_t \hat{\varphi}^*(t-nT)\hat{\varphi}(t-(n-k)T)dt \\
= N_0 < \hat{\varphi}_{n-k}, \hat{\varphi}_n > = q_k N_0
\]
Hence \(\{z_k\} \) is not in general white. Therefore, after filtering, we have a colored noise process. Ideally, we would like to work with white noise, and hence we would like to “whiten” it as illustrated in Figure 4.3. To avoid confusion of lots of \(z \)'s floating around, the \(D \)-transform is the \(Z \)-transform with \(D = z^{-1} \).

Definition 4.2.3. (The \(D \)-transform)

If \(H(z) \) is the \(z \)-transform of the sequence \(\{h_n\} \), i.e.,

\[
H(z) = \sum_n h_n z^{-n},
\]

then the \(D \)-transform of \(\{h_n\} \) is

\[
H(D) = \sum_n h_n D^n
\]

and we denote the transform pair by

\[
\{h_n\} \overset{D}{\leftrightarrow} H(D)
\]

Now, given the review class, we know that the power spectral density of a random (stationary) process is

\[
S_z(D) = \mathcal{D}\{E[z_k z^*_k - n]\}
\]

And passing a random process (stationary) through a linear filter \(\{g_n\} \) (i.e., with \(D \)-transform \(G(D) \)) results in

\[
S_w(D) = G(D)G^*(\frac{1}{D^*})S_z(D)
\]

Now we use the spectral factorization theorem.

Theorem 4.2.2. (Spectral factorization theorem) A power spectrum \(S(D) \), can be factorized into

\[
S(D) = F(D)F^*(\frac{1}{D^*})
\]

iff the Paley-Wiener condition holds, i.e.,

\[
\frac{1}{2\pi} \int_{-\pi}^{\pi} \ln|S(e^{j\omega})|d\omega < \infty
\]

We assume, that this holds for the process that we deal with. Now, armed with this we can write

\[
S_z(D) = N_0 Q(D) = \hat{F}(D)\hat{F}^*(\frac{1}{D^*})
\]

And therefore the filtering \(\{z_k\} \) through \(G(D) \) gives,

\[
S_w(D) = G(D)G^*(\frac{1}{D^*})\hat{F}(D)\hat{F}^*(\frac{1}{D^*})
\]

By choosing \(G(D) = \frac{N_0 Q(D)}{\hat{F}(D)\hat{F}^*(\frac{1}{D^*})} \), we see that \(S_w(D) = N_0 \), i.e., white noise! Now, what happens to our receiver? Note that \(S_z(D) = N_0 \mathcal{D}\{g_n\} \), hence we have in \(D \)-transform notation

\[
Y(D) = Q(D) \parallel X(D) + Z(D)
\]

\[
= \frac{1}{N_0} S_z(D) \parallel X(D) + Z(D)
\]
4.3. MAXIMUM LIKELIHOOD SEQUENCE ESTIMATION (MLSE)

Therefore,

\[
G(D)Y(D) = \frac{\sqrt{N_0}}{\hat{F}^*(\frac{1}{D})} \hat{F}(D) \hat{X}(D) + W(D)
\]

\[
= \frac{1}{\sqrt{N_0}} \hat{F}(D) \parallel p \parallel X(D) + W(D)
\]

So, it is like converting the channel into \(F\). A natural question to ask is whether this procedure gives any advantage.

The spectral factorization can be arranged such that \(S_z(D) = \hat{F}(D) \hat{X}(D)\) has a causal factor \(\hat{F}(D)\). Hence we have not only whitened the noise but have converted our channel into a causal sequence. This combination of \(\hat{v}^*(-t)\) and \(G(D)\) together is called the whitened matched filter.

Now we have the following problem at hand. Detect sequence \(\{\tilde{x}_k\}\) when we observe

\[
Y(D) = \frac{1}{\sqrt{N_0}} \hat{F}(D) \parallel p \parallel X(D) + W(D)
\]

Or in time domain,

\[
y_k = \sum_{n=0}^{\infty} x_{k-n} f_n \hat{D}^{-1}(\frac{\hat{F}(D)}{\sqrt{N_0}}) + w_k
\]

when \(w_k\) is now white Gaussian noise and \(\{f_n\}\) is a causal sequence. Given the problem stated in (4.7), we would now like to derive efficient detection algorithms while retaining optimality. A naive detection scheme would incur a complexity of \(M^K\) where \(M\) is the constellation size and \(K\) the time window of detection. Clearly we would need better methods than exponential and the next two sections give efficient ML and MAP decoders for this problem.

4.3 Maximum Likelihood Sequence Estimation (MLSE)

Consider again\(^1\),

\[
Y(D) = F(D)X(D) + Z(D)
\]

where \(F(D) = f_0 + f_1D + \ldots + f_v D^v\) i.e. a finite length response.

Let

\[
S_z(D) = \frac{N_0}{2} \stackrel{\text{def}}{=} \sigma^2
\]

Note that the signal to noise ratio (SNR) is given by,

\[
\frac{\mathbb{E}\left[|y(k) - z(k)|^2\right]}{\mathbb{E}\left[|z(k)|^2\right]} = \frac{||f||^2 \mathbb{E}\left[|z(k)|^2\right]}{\sigma^2} = \frac{\mathbb{E}_f}{\sigma^2} ||f||^2
\]

We make the following assumptions,

- Uniform priors
- \(\nu < \infty \Rightarrow \) finite impulse response

Implication: \(\{y(k)\}\) is the output of a finite state machine operating over \(\mathcal{C}\) (see Figure 4.4), with additive i.i.d. noise process \(w(k)\).

\(^1\)We revert back to using \(z(k)\) as the notation for noise. In the previous notation this was \(w(k)\) and we use \(z(k)\) as white noise.
Definition 4.3.1. We define the state of the finite state machine as $S(k)$ where, let,

$$s(k) = \begin{bmatrix} x(k-1) \\ x(k-2) \\ \vdots \\ x(k-\nu) \end{bmatrix} \in \mathbb{Q}^\nu$$

Hence $y(k)$ depends only on states $s(k), s(k+1)$ and noise $z(k)$.

4.3.1 Viterbi Algorithm

The Maximum Likelihood detection criterion yields,

$$\{\hat{x}(D)\} = \arg \max_{X(D)} \mathbb{P}[Y(D)|X(D)]$$

Notes:

- This could deal with sequences that are semi-infinite.

- Since there is a one-to-one map between $s(D)$ and $X(D)$, we can equivalently pose the problem as estimating the state from noisy observations.

- Now, the form of the problem is similar to the decoding of convolutional codes, i.e., employ the Viterbi algorithm (dynamic programming).

- Let us denote $u(D) = f(D)x(D)$. Hence $u(k)$ depends only on $s(k)$ and $s(k+1)$.
4.3. Maximum Likelihood Sequence Estimation (MLSE)

Since $z(k)$ is i.i.d. Gaussian, the log-likelihood splits up as

$$
\log P\{y(D)|s(D)\} = \sum_k \log P_z\{y(k) - u(k)\}
$$

$$
= \sum_k \left[\log(2\pi\sigma^2) - |y(k) - u(k)|^2 \right]
$$

Let us denote

$$
\Gamma[s(D)]_{k_1}^{k_2} \overset{\text{def}}{=} \sum_{k=k_1}^{k_2-1} \log P_z[y(k) - u(s(k), s(k+1))]
$$

$u(s(k), s(k+1))$ shows explicit dependence of $u(k)$ on $s(k), s(k+1)$.

Dynamic programming principle: Suppose, for the moment, we knew that the state $s(k)$ at time k was S_j (one particular choice out of M^ν choices). Then, for any allowable state sequence $s(D)$, that starts with $s(0) = 0$ and passes through state S_j at time k, the log likelihood would break up into two independent parts,

$$
\Gamma[s(D)]_{0}^{k} = \Gamma[s(D)]_{0}^{k_1} + \Gamma[s(D)]_{k_1}^{k}
$$

If $\hat{s}_j(D)$ be any allowable state sequence from time 0 to k, that has maximum log-likelihood $\Gamma[s(D)]_{0}^{k}$ among all the allowable state sequences starting from $s(0) = 0$ and ending at $s(K) = S_j$. We call $\hat{s}_j(D)$, the survivor at time k corresponding to state S_j. Therefore, $\hat{s}_j(D)$ must be the initial segment of the maximum likelihood state sequence, if indeed the true state sequence was S_j at time k. We do not know the state sequence $s(k)$ but clearly it has to be one of a finite set of size M^ν. Consequently, we store survivor sequences for each state and their corresponding log-likelihoods $\Gamma[\hat{s}_j(D)]_{0}^{k}$ for $j \in \{1, \ldots, M^\nu\}$.

Thus we store M^ν sequences $\hat{s}_j(D)$ and their log-likelihoods $\Gamma[\hat{s}_j(D)]_{0}^{k}$ and update them as follows:

1. For each of the M allowable extensions of $\hat{s}_j(D)$ to time $k+1$, compute for each of the M^ν survivors:

$$
\Gamma[\hat{s}_j(D)]_{0}^{k+1} = \Gamma[\hat{s}_j(D)]_{0}^{k} + \ln P_z[y(k) - u(S_t, S_j)] \quad \forall j \in \{1, \ldots, M^\nu\}
$$

where $t \in \{1, \ldots, M^\nu\}$. This needs $M^\nu M = M^{\nu+1}$ additions.

2. For each state j, compare the log likelihoods $\Gamma[\hat{s}_j(D)]_{0}^{k+1}$ of the M extensions that end in state S_j, and select the largest as the corresponding survivor. This needs M^ν, M-ary comparisons.

This summarizes the Viterbi algorithm, which in principle terminates only at $k \to \infty$. However, we can make a decision on a particular state (dynamic programming for ISI channel), if all the survivors agree on that state. Moreover in practice, typically good decisions can be made with a finite time horizon. Note that such a sequence estimation can also work if $x(D)$, itself was the result of the finite state machine (e.g., convolutional code). In this case the state machine can be augmented and one can obtain an optimal joint equalization and decoding of the channel code.

4.3.2 Error Analysis

A correct state sequence and an erroneous one are illustrated in Figure 4.5.

Error event: An error event extends from time k_1 to k_2 if the estimated state sequence $\hat{s}(D)$ is equal to the correct state sequence $s(D)$ at times k_1 and k_2 but nowhere in between. Hence $\hat{s}(k_1) = s(k_1), \hat{s}(k_2) =$
CHAPTER 4. INTER-SYMBOL INTERFERENCE AND OPTIMAL DETECTION

Figure 4.5:

\(s(k_2) \neq s(k), k_1 < k < k_2 \). The Length of error event is \(n = k_2 - k_1 - 1 \geq \nu \).

Clearly for such an error event:

\[\hat{x}(k) = x(k), k_1 - \nu \leq k \leq k_1 - 1 \text{ and } k_2 - \nu \leq k \leq k_2 - 1 \]

from the definition of \(s(k) \).

However, \(\hat{x}(k_1) \neq x(k_1) \) and \(\hat{x}(k_2-\nu-1) \neq x(k_2-\nu-1) \) since, \(\hat{s}(k_1+1) \neq s(k_1+1) \), and \(\hat{s}(k_2-1) \neq s(k_2-1) \), we can define,

\[\varepsilon_x(D) \overset{def}{=} [x(k_1) - \hat{x}(k_1)] + [x(k_1+1) - \hat{x}(k_1+1)]D + \ldots + [x(k_2-\nu-1) - \hat{x}(k_2-\nu-1)]D^{n-\nu} \]

\[\varepsilon_u(D) \overset{def}{=} [u(k_1) - \hat{u}(k_1)] + [u(k_1+1) - \hat{u}(k_1+1)]D + \ldots + [u(k_2-1) - \hat{u}(k_2-1)]D^n \]

Since \(u(D) = f(D)x(D) \), clearly we have \(\varepsilon_u(D) = f(D)\varepsilon_x(D) \)

Probability of a particular error event:

Think of \(u(D) \) being “symbols” in sequence space. Hence, the same way as we did earlier, we can write the NNUB as

\[\mathbb{P}_{e,\text{MLSE}} \leq N_e Q \left(\frac{d_{\text{min}}}{2\sigma} \right) \]

where \(d_{\text{min}} \) is the minimum distance between sequences \(u(D) \), i.e.

\[d_{\text{min}} = \min_{u \neq \hat{u}} \|u(D) - \hat{u}(D)\| \]

\(N_e \) is again \(N_e = \sum_x P_x(\varepsilon_x + \hat{x})N_u \) that is, the average \# of nearest neighbors. Note that this is done in sequence space and we calculate over the allowable sequences, i.e., \(\varepsilon_x + \hat{x} \) must be an allowable sequence. The main question is to be able to calculate \(d_{\text{min}} \) for different channels.
4.4 Maximum a-posteriori symbol detection

In section (4.3), we explored the maximum likelihood detector. But if the priors are not uniform the MAP detector is the optimal scheme and this is the focus of the following section.

4.4.1 BCJR Algorithm

For minimizing symbol error probability we use

\[
\hat{x}(n) = \arg \max_{x(n)} \mathbb{P}[x(n)|y(0), \ldots, y(N-1)]
\]

The BCJR algorithm efficiently does this computation simultaneously for all \(\{\hat{x}(n)\} \).

\[
\hat{x}(n) = \arg \max_{x(n)} \mathbb{P}[x(n)|y_0^{N-1}] = \arg \max_{x(n)} \mathbb{P}[x(n), y_0^{N-1}]
\]

where \(y_k^y = \{y(k_1), \ldots, y(k_2)\} \)

\[
\mathbb{P}[x(n), y_0^{N-1}] = \sum_{i,j} \mathbb{P}[x(n), y_0^{n-1}, y(n), y_0^{N-1}, s(n) = S_i, s(n+1) = S_j]
\]

\[
= \sum_{i,j} \mathbb{P}[y_0^{n-1}, s(n) = S_i] \mathbb{P}[x(n), y(n), y_0^{N-1}, s(n+1) = S_j|y_0^{n-1}, s(n) = S_i]
\]

\[
= \sum_{i,j} \mathbb{P}[y_0^{n-1}, s(n) = S_i] \mathbb{P}[x(n), y(n), s(n+1) = S_j|y_0^{n-1}, s(n) = S_i]
\]

\[
= \sum_{i,j} \mathbb{P}[y_0^{n-1}, s(n) = S_i] \mathbb{P}[x(n), y(n), s(n+1) = S_j|y_0^{n-1}, s(n) = S_i]
\]

\[
= \sum_{i,j} \mathbb{P}[y_0^{n-1}, s(n) = S_i] \mathbb{P}[x(n), y(n), s(n+1) = S_j|s(n) = S_i]
\]

\[
\mathbb{P}[y_0^{N-1}|x(n), y_0^{n-1}, y(n), s(n) = S_i, s(n+1) = S_j]
\]

\[
\mathbb{P}[y_0^{N-1}|s(n+1) = S_j]
\]

where (a) is due to the Markov property of the finite state machine. Therefore we obtain the relationship,

\[
\mathbb{P}[x(n), y_0^{N-1}] = \sum_{i,j} \alpha_n(i) \gamma_n(i,j) \beta_{n+1}(j)
\]

The BCJR algorithm essentially computes \(\alpha_n(i) \), and \(\beta_{n+1}(j) \) efficiently through the forward-backward recursion.

\[
\gamma_n(i,j) = \mathbb{P}[y(n), x(n), s(n+1)) = S_j|s(n) = S_i]
\]

This can be computed for each \(n \), as,

\[
\gamma_n(i,j) = \mathbb{P}[y(n), x(n) | s(n) = S_i] \mathbb{P}[s(n+1) = S_j|s(n) = S_i, x(n), y(n)]
\]

\[
= p(x(n)) p(y(n) | x(n), s(n) = S_i) \mathbb{P}[s(n+1) = S_j|s(n) = S_i, x(n), y(n)]
\]

If the transition from \(S_i \) to \(S_j \) occurs due to symbol \(\hat{x}(n) \), then

\[
\mathbb{P}[s(n+1) = S_j|s(n) = S_i, x(n), y(n)]
\]

is either 1 if \(\hat{x}(n) = x(n) \), and 0 otherwise. Now we need to compute \(\{\alpha_n(i)\} \) and \(\{\beta_n(j)\} \).
CHAPTER 4. INTER-SYMBOL INTERFERENCE AND OPTIMAL DETECTION

Forward recursion

Computation of \(\{ \alpha_n(i) \} \)

\[
\alpha_n(i) = \mathbb{P}[y_0^{n-1}, s(n) = S_i] = \sum_k \mathbb{P}[y_0^{n-1}, s(n) = S_i, s(n-1) = S_k] = \sum_k \mathbb{P}[y_0^{n-2}, y(n-1), s(n) = S_i, s(n-1) = S_k] = \sum_k \alpha_{n-1}(k) \gamma_{n-1}(k, i)
\]

Therefore we get the following forward recursion,

\[
\alpha_n(i) = \sum_k \alpha_{n-1}(k) \gamma_{n-1}(k, i).
\] (4.9)

Backward recursion

Computation of \(\{ \beta_n(j) \} \)

\[
\beta_{n+1}(j) = \mathbb{P}[y_{n+1}^N | s(n+1) = S_j] = \sum_k \mathbb{P}[y_{n+2}^N, s(n+2) = S_k, s(n+1) = S_j] = \sum_k \mathbb{P}[y(n+1), s(n+2) = S_k, s(n+1) = S_j] \mathbb{P}[y_{n+1}^N | y(n+1), s(n+2) = S_k, s(n+1) = S_j] = \sum_k \gamma_{n+1}(j, k) \beta_{n+2}(k)
\]

Hence we get the following backward recursion,

\[
\beta_{n+1}(j) = \sum_k \gamma_{n+1}(j, k) \beta_{n+2}(k)
\] (4.10)

Using the forward-backward recursions, one can then compute the max-a-posteriori symbols \(\{ \hat{x}(n) \}_{n=0}^{N-1} \).

Notes:

1. The BCJR algorithm computes \(\{ x(n) \} \) according to minimum symbol-by-symbol error probability: This could be different from the sequence of error probability.

2. BCJR also gives us “soft-information” on the reliability of the symbols detected.

3. The BCJR algorithm and the Viterbi algorithm (MLSE) applied to same observations (and uniform priors) may give different candidate sequences, since they optimize different criteria. The choice of which criteria is important depends on the application.
Chapter 5

Equalization: Low complexity suboptimal receivers

In many applications even the efficient implementation of optimal receivers may be too computationally intensive for practical use. In such cases further reductions in complexity are sought at the cost of optimality. This chapter explores several such structures for detection in ISI channels. The chapter starts with a discussion of linear estimation which forms the principles behind all the structures studied in this chapter. We then proceed to derive and analyze several suboptimal schemes for ISI channels using linear estimation as a tool.

5.1 Linear estimation

5.1.1 Orthogonality principle

Suppose
\[y(k) = Ax(k) + z(k) \]
and given observations \{y(k)\} one wants to estimate \(x(k) \). Here \(z(k) \) is assumed to be Gaussian i.i.d. noise.

Estimation criterion
\[\min E \left[||x(k) - \hat{x}(k)||^2 \right] \]
This is called the minimum mean squared error (MMSE) criterion. Our interest is restricted to a class of linear estimators, \(i.e. \),
\[\hat{x}(k) = Wy(k) \]
where \(W \) is the linear estimator matrix.

Hence
\[e(k) \overset{def}{=} x(k) - \hat{x}(k) = x(k) - Wy(k) \]
and the problem becomes to find \(W \) such that
\[W_{opt} = \arg \min W \ E \left[||x(k) - Wy(k)||^2 \right] \]
and the MMSE is defined as
\[\sigma_{MMSE}^2 = E \left[||x(k) - W_{opt}y(k)||^2 \right] \]
Notation: Given a vector (or matrix) \(\mathbf{x} \) (or \(\mathbf{A} \)) we use the notation \(\mathbf{x}^* \) (or \(\mathbf{A}^* \)) to denote Hermitian transpose, \textit{i.e.}, complex conjugation and transpose. We use \(\mathbf{x}^t \) (or \(\mathbf{A}^t \)) to denote ordinary transpose without complex conjugation.

Now, we can write the mean-squared error as,

\[
\mathbb{E} \left[\| \mathbf{x}(k) - \mathbf{W}\mathbf{y}(k) \|^2 \right] = \text{trace} \{ \mathbb{E} \left[(\mathbf{x}(k) - \mathbf{W}\mathbf{y}(k))(\mathbf{x}(k) - \mathbf{W}\mathbf{y}(k))^* \right] \}
\]

\[
= \text{trace} \left\{ \mathbf{R}_{xx} - \mathbf{R}_{xy} \mathbf{W}^* - \mathbf{W}\mathbf{R}_{yx}^* + \mathbf{W}\mathbf{R}_{yy} \mathbf{W}^* \right\}
\]

(5.1)

Now to find \(\mathbf{W}_{\text{opt}} \), we can differentiate equation (5.1) with respect to \((\mathbf{W})_{(i,j)}^{th} \) element of matrix \(\mathbf{W} \). An alternate method would be to "guess" the solution. We use the following basic property of the trace operator for matrices.

\textbf{Fact 5.1.1.} For matrices \(\mathbf{A} \in \mathbb{C}^{m \times n} \) and \(\mathbf{B} \in \mathbb{C}^{n \times m} \),

\[\text{trace}(\mathbf{A}\mathbf{B}) = \text{trace}(\mathbf{B}\mathbf{A}) \]

\textbf{Theorem 5.1.1.} \textit{(Orthogonality principle)} The MSE is minimized if and only if the following condition is met

\[\mathbb{E} \left[\mathbf{e}(k)\mathbf{y}^*(k) \right] = 0 \quad \forall k \]

\textbf{Proof:} Let \(\bar{\mathbf{W}} \) any linear estimator, and \(\mathbf{W}_{\text{opt}} \) be the linear estimator which satisfies the orthogonality principle.

\[
\mathbb{E} \left[\| \mathbf{\hat{e}}(k) \|^2 \right] = \mathbb{E} \left[\| \mathbf{\hat{e}}(k) - \mathbf{e}_{\text{opt}}(k) + \mathbf{e}_{\text{opt}}(k) \|^2 \right]
\]

\[
= \mathbb{E} \left[\| \mathbf{\hat{e}}(k) - \mathbf{e}_{\text{opt}}(k) \|^2 \right] + \mathbb{E} \left[\| \mathbf{e}_{\text{opt}}(k) \|^2 \right] + 2\text{Re} \left\{ \mathbb{E} \left[\mathbf{e}_{\text{opt}}(k) (\mathbf{\hat{e}}(k) - \mathbf{e}_{\text{opt}}(k)) \right] \right\}
\]

\[
\overset{(a)}{=} \mathbb{E} \left[\| \mathbf{\hat{e}}(k) - \mathbf{e}_{\text{opt}}(k) \|^2 \right] + \mathbb{E} \left[\| \mathbf{e}_{\text{opt}}(k) \|^2 \right] + 2\text{Re} \left\{ \text{trace} \left[\mathbb{E} \left[\mathbf{e}_{\text{opt}}(k) (\mathbf{\hat{e}}(k) - \mathbf{e}_{\text{opt}}(k)) \right] \right] \right\}
\]

\[
\overset{(b)}{=} \mathbb{E} \left[\| \mathbf{\hat{e}}(k) - \mathbf{e}_{\text{opt}}(k) \|^2 \right] + \mathbb{E} \left[\| \mathbf{e}_{\text{opt}}(k) \|^2 \right] + 2\text{Re} \left\{ \text{trace} \left[\mathbb{E} \left[(\mathbf{W}_{\text{opt}} - \bar{\mathbf{W}})\mathbf{y}(k)\mathbf{e}_{\text{opt}}(k) \right] \right] \right\}
\]

\[
\overset{(c)}{=} \mathbb{E} \left[\| \mathbf{\hat{e}}(k) - \mathbf{e}_{\text{opt}}(k) \|^2 \right] + \mathbb{E} \left[\| \mathbf{e}_{\text{opt}}(k) \|^2 \right]
\]

Where \((a) \) follows because trace of a scalar is the same as the scalar. Also \((b) \) follows since trace is a linear operator \textit{i.e.},

\[\mathbb{E}[\text{trace}(\cdot)] = \text{trace}[\mathbb{E}[(\cdot)]], \]

and because of Fact 5.1.1. Finally \((c) \) follows due to the supposition of the theorem. Therefore we get the if part of the theorem directly due to the inequality \(\mathbb{E} \left[\| \mathbf{\hat{e}}(k) \|^2 \right] \geq \mathbb{E} \left[\| \mathbf{e}_{\text{opt}}(k) \|^2 \right] \). We get the only if part by noticing that we need for optimality of any other estimator, \(\mathbb{E} \left[\| \mathbf{\hat{e}}(k) - \mathbf{e}_{\text{opt}}(k) \|^2 \right] = 0 \) which means that \(\mathbf{\hat{e}}(k) = \mathbf{e}_{\text{opt}}(k) \) almost everywhere, \textit{i.e.}, except over a set of measure zero. This implies that \(\bar{\mathbf{W}}\mathbf{y}(k) = \mathbf{W}_{\text{opt}}\mathbf{y}(k) \) almost everywhere, resulting in \(\bar{\mathbf{W}} = \mathbf{W}_{\text{opt}} \) for optimality. Hence we have proved the theorem.
Therefore, using the orthogonality principle, we have
\[E[(x(k) - W_{opt}y(k))y^*(k)] = 0 \]
or
\[W_{opt}R_{yy} = R_{xy} \]
where \(R_{yy} = E[y(k)y^*(k)] \) and \(R_{xy} = E[x(k)y^*(k)] \) and hence
\[W_{opt} = R_{xy}R_{yy}^{-1} \quad (5.2) \]

Now, let us calculate the minimum mean-squared error (MMSE) of the optimal estimator.
\[
\sigma_{MMSE}^2 = E\left[||x(k) - W_{opt}y(k)||^2\right] \\
= E\left[|(x(k) - W_{opt}y(k))^*e_{opt}|\right] \\
= E[x^*(k)e_{opt}] - \text{trace}\{E[W_{opt}y(k)e_{opt}]\} \\
\overset{(a)}{=} E[x^*(k)(x(k) - W_{opt}y(k))] \\
= E\left[||x(k)||^2\right] - \text{trace}\{E[W_{opt}y(k)x^*(k)]\} \\
= \text{trace}\{E[xx^*] - W_{opt}E[yx^*]\} \\
= \text{trace}\{R_{xx} - W_{opt}R_{yz}\}
\]

Where (a) follows due to Theorem 5.1.1.

Optimum (non-linear) MMSE estimation

A natural question to ask is what the optimal estimator is, without the restriction to a linear estimator. We next show that the optimal estimator is given by
\[\hat{x} = E[x \mid Y = y]. \]

Notes:

1. In general, depending on the distributions \(\hat{x} = E[x \mid Y = y] \) could be a non-linear function of \(y \). For brevity we will denote \(E[x \mid Y = y] \) by \(E[x \mid y] \).

2. If \(x, y \) are jointly Gaussian, then \(\hat{x} = E[x \mid y] \) is linear and hence linear estimators are optimal for estimating Gaussian random processes from another (correlated) Gaussian random process.

3. Here as well we will show (see Theorem 5.1.2), that the orthogonality principle holds, i.e.,
\[(x - E[x \mid y]) \perp (g(y)) \]
for any (measurable) function \(g(y) \). Hence
\[E[e_{opt}y^*] = 0. \]

Theorem 5.1.2. \(\hat{x}_{opt} = E[X \mid Y = y] \) and \(x - \hat{x}_{opt} \perp g(y) \) for any (measurable) function \(g \).
Proof: First, it is easy to see that the tower property holds, i.e.,
\[\mathbb{E}_x[X] = \mathbb{E}_y[\mathbb{E}_{x|y}[X]] . \]
Hence
\[
\mathbb{E}[Xg^*(y)] = \mathbb{E}_y[\mathbb{E}_{x|y}[Xg^*(y)]] = \mathbb{E}_y \left[(\mathbb{E}_{x|y}[X])g^*(y) \right]
\]
\[\Rightarrow \mathbb{E} \left[(X - \mathbb{E}_{x|y}[X])g^*(y) \right] = 0. \]
Therefore, if we denote \(\hat{x}_{opt} = \mathbb{E}_{x|y}[X | Y] \), then \(x - \hat{x}_{opt} \perp g(y) \).

Now, let \(\tilde{x} \) be any other estimator
\[
\Rightarrow E[\| x - \tilde{x} \|^2] = E[\| x - \tilde{x} + \hat{x}_{opt} - \tilde{x}_{opt} \|^2]
\]
\[= E[\| (\hat{x}_{opt} - \tilde{x}) + e_{opt} \|^2] = E[\| (\hat{x}_{opt} - \tilde{x}) \|^2 + E[\| e_{opt} \|^2] + 2Re \left\{ E[e_{opt} (\hat{x}_{opt} - \tilde{x})^*] \right\} \]
\[\Rightarrow E[\| x - \hat{x} \|^2] = E[\| (\hat{x}_{opt} - \tilde{x}) \|^2] + E[\| e_{opt} \|^2]
\]
\[\Rightarrow \hat{x} = \hat{x}_{opt}, \ a.e. \]

Where the notation a.e. means "almost everywhere", i.e., everything except over a set of zero measures.

The estimation principles can be applied to a variety of situations. In particular we are interested in applying it to scenarios where we observe a random process \(\{y(k)\} \) which is a noisy observation of the process \(\{x(k)\} \) which we want to estimate. Note that in general the processes \(\{x(k)\}, \{y(k)\} \) need not be white, i.e., there could be dependencies over time which we can exploit. In this context in the next sections we consider the following cases.

Smoothing: Here we are allowed to use the entire observation \(y(n), \ n \in (-\infty, \infty) \) in order to estimate \(x(k) \). Therefore we can use "future" observations in the estimate of \(x(k) \).

Prediction: In this case we are only allowed to process the observations strictly causally. Therefore, in estimating \(x(k) \), we can only use observations \(y(n), \ n \in (-\infty, k - 1) \). In this problem, we can also formulate a pure prediction problem where the observations \(x(n), \ n \in (-\infty, k - 1) \) are used to predict the value of \(x(k) \).

Filtering: In this case we are only allowed to process the observations causally. Therefore, in estimating \(x(k) \), we can only use observations \(y(n), \ n \in (-\infty, k) \). Therefore the difference between prediction and filtering is that one can use the "current" observation as well for the estimate of \(x(k) \). However, this means that the filtering problem is degenerate if the observations are \(\{x(k)\} \) itself.

5.1.2 Wiener smoothing

Recall, for a random process \(\{x(k)\} \), (scalar and wide-sense stationary).

Autocorrelation:
\[
\begin{align*}
r_{xx}(l) &= E[x(k)x^*(k - l)] \\
r_{xx}(l) &= r^*_{xx}(-l)
\end{align*}
\]
5.1. LINEAR ESTIMATION

i.e., \(\{r_{xx}(l)\} \) exhibits conjugate symmetry.

Power Spectrum: We define the power spectrum and cross spectrum as,

\[
R_{xx}(D) = \mathcal{D}\{E[x_k x_{k-n}]\}, \quad R_{xy}(D) = \mathcal{D}\{E[x_k y_{k-n}]\},
\]

(5.3)

where \(\mathcal{D}(\cdot) \) denotes the D-transform. Note that there is conjugate symmetry in the power spectrum, i.e., \(R_{xx}(D) = R_{xx}^*(D^{-1}) \).

Notation (mneumonic): Very often in the class we denote the power spectrum and cross spectrum loosely as

\[
R_{xx}(D) = \mathbb{E}\{X(D)X^*(D^{-1})\}, \quad R_{xy}(D) = \mathbb{E}\{X(D)Y^*(D^{-1})\},
\]

but this is an *imprecise* statement. What we really mean is the relationship in (5.3). This notation is really used as a mneumonic to easily write out relationships.

Suppose we observe \(\{y(k)\} \) and we want to estimate \(\{x(k)\} \) where unlike our previous set-up, there would be correlation between \(y(l) \) and \(x(k), k \neq l \). Here we would need to “filter” \(\{y(k)\} \) to estimate \(\{x(k)\} \). We restrict our attention to linear filters, i.e.,

\[
\hat{x}(k) = \sum_n w(n)y(k-n)
\]

Hence,

\[
\hat{X}(D) = W(D)Y(D)
\]

\[
E(D) = X(D) - \underbrace{W(D)Y(D)}_{\hat{X}(D)}
\]

We use the criterion,

\[
\min_{W(D)} \mathbb{E}\left[|e(k)|^2\right]
\]

Claim 5.1.1. The optimal estimator \(W_{\text{opt}}(D) \) is such that

\[
\mathbb{E}[e_{\text{opt}}(k)y^*(k-n)] = 0, \quad \forall n
\]

where \(e_{\text{opt}}(k) = x(k) - \hat{x}_{\text{opt}}(k) \), where \(\hat{X}_{\text{opt}}(D) = W_{\text{opt}}(D)Y(D) \).

Using this orthogonality principle we have,

\[
\mathbb{E}[e_{\text{opt}}(k)y^*(k-n)] = 0, \quad \forall n
\]

(5.4)

Hence,

\[
\mathbb{E}\left[\sum_l w_{\text{opt}}(l)y(k-l)\right]g^*(k-n) = 0
\]

\[
\Rightarrow \mathbb{E}[x(k)y^*(k-n)] - \sum_l w_{\text{opt}}(l)\mathbb{E}[y(k-l)y^*(k-n)] = 0
\]

\[
\Rightarrow r_{xy}(n) = \sum_l w_{\text{opt}}(l)r_{yy}(n-l)
\]

\[
\Rightarrow R_{xy}(D) = W_{\text{opt}}(D)R_{yy}(D)
\]

(5.5)

where we have denoted \(r_{xy}(n) = \mathbb{E}[x(k)y^*(k-n)] \) and \(r_{yy}(n-l) = \mathbb{E}[y(k-l)y^*(k-n)] \).
Note: The relationship in (5.4) (seen in more detail in (5.5) above) can be written in mnemonic as
\[\mathbb{E} [E(D)Y^*(D^{-*})] = 0. \tag{5.6} \]
This is useful since the relationship in (5.5) can be easily seen by simple manipulation as
\[\mathbb{E} \left[\{X(D) - W(D)Y(D)\} Y^*(D^{-*}) \right] = 0 \]
\[\Rightarrow \quad R_{xy}(D) = W_{opt}(D)R_{yy}(D). \]
The relationship given in (5.6) is really again a shorthand for the cross-spectrum relationship as illustrated before in (5.3) and in (5.5). One can represent the orthogonality condition either way as long as the meaning is clear.

Hence
\[W_{opt}(D) = R_{xy}(D)R_{yy}^{-1}(D). \]
is the optimal linear filter to estimate \(\{x(k)\} \) from \(\{y(k)\} \). As before, the cross-spectrum and the spectrum respectively, are denoted by \(R_{xy}(D) = \mathbb{E}[X(D)Y^*(D^{-*})] \), \(R_{yy}(D) = \mathbb{E}[Y(D)Y^*(D^{-*})] \).

Note that,
\[
\begin{align*}
Y(D) & \Leftrightarrow y(n) \\
\Rightarrow Y(D) & = \sum y(n)D^n \\
\Rightarrow Y^*(D) & = \sum y^*(n)(D^*)^n \\
\Rightarrow Y^*(D^{-1}) & = \sum y^*(n)(D^{-*})^n \\
\Rightarrow Y^*(D^{-*}) & = \sum y^*(n)D^{-n} = \sum y^*(-n)D^n
\end{align*}
\]

5.1.3 Linear prediction
Given a sequence \(\{x_k\} \), we want to use the past to predict the present using a linear filter, i.e.,
\[\hat{x}_k = \sum_{m=1}^{\infty} a_m x_{k-m} \]

Question: Find \(\{a_m\}_{m=1}^{\infty} \) such that \(\mathbb{E} \left[|x_k - \hat{x}_k|^2 \right] \) is minimized.

Using orthogonality condition, we have
\[e_k = (x_k - \hat{x}_k) \perp x_{k-n}, \quad n = 1 \ldots \]

Using this,
\[\mathbb{E} \left[x_k - \sum_{m=1}^{\infty} a_m x_{k-m} \right] x^*_k = 0 \]
\[\Rightarrow \quad \mathbb{E} \left[x_k x^*_{k-n} \right] = \sum_{m=1}^{\infty} a_m \mathbb{E} \left[x_{k-m} x^*_{k-m-n} \right] \]
5.1. LINEAR ESTIMATION

giving,

\[r_x(n) = \sum_{m=1}^{\infty} a_m r_x(n-m), \quad n = 1, \ldots \]

(5.8)

Let,

\[g_n = r_x(n) - \sum_{m=1}^{\infty} a_m r_x(n-m) = \sum_{m=0}^{\infty} a'_m r_x(n-m) \]

(5.9)

with,

\[a'_0 = 1, a'_m = -a_m, m \geq 1 \]

Clearly, due to (5.8) \{g_n\} is an anti-causal sequence. Now, suppose the Paley-Wiener condition holds and we can write the power spectral density (PSD) of \{x(k)\} as,

\[S_x(D) = L(D)L^*(D^{-*}) \Gamma_x \]

where \(L(D) \) is minimum phase (i.e., zeros and poles of \(L(Z) \) are strictly inside the unit circle). Now, taking the \(D \)-transform on both sides of (5.9) we get

\[G(D) = A'(D)S_x(D) = A'(D)L(D)L^*(D^{-*}) \Gamma_x \]

where \(A'(D) \) is causal and monic and \(G(D) \) is anti-causal. Hence,

\[\frac{G(D)}{\Gamma_x L^*(D^{-*})} = A'(D)L(D) \]

(5.10)

Now, since \(L(D) \) is minimum phase, \(L^{-1}(D) \) is causal and stable, and \(1/L^*(D^{-n}) \) is anti-causal. Hence we have LHS of (5.10) which is anti-causal, equal to the RHS which is causal. Also, since \(A'(D), L(D) \) are monic and causal, \(A'(D)L(D) \) is also monic. Hence for (5.10) to be true, we need

\[A'(D) = \frac{1}{L(D)} \]

Since \(L(D) \) is a minimum phase, \(A'(D) \) is therefore causal and stable.

Also for \(l > 1 \)

\[\mathbb{E} [e_k e_{k-l}^*] = \mathbb{E} \left[e_k \{x_{k-l} - \sum_{m=1}^{\infty} a_m x_{k-m-l}\}^* \right] \]

\[= \mathbb{E} [e_k x_{k-l}^*] - \sum_{m=1}^{\infty} a'_m \mathbb{E} [e_k x_{k-m-l}^*] \]

Since due to orthogonality principle, \(\mathbb{E}[e_k x_{k-l}^*] = 0, \forall l > 1 \), we get,

\[\mathbb{E} [e_k e_{k-l}^*] = 0, l \neq 0 \]

i.e., \(\{e_k\} \) is a white sequence and the prediction filter is also a whitening filter for the error sequence. The prediction error sequence is called the innovation sequence as it conveys the unpredictability or the “new” information in each step of the process.

\[^1\text{L}^{-1}(D) = l_0 + \sum_{n=1}^{\infty} l_n D^n \Rightarrow L^*(D^{-*}) = l_0^* + \sum_{n=1}^{\infty} l_n^* D^{-n} \text{ is anti-causal.}\]
5.1.4 Geometry of random processes

A random variable/vector/process is a mapping from a probability space \(\Omega \), to \(\mathbb{C}^n \). i.e., if \(x \in \mathbb{C}^n \), \(x = x(\omega) \), \(X : \Omega \rightarrow \mathbb{C}^n \).

Example 5.1.1. Think of \(\omega \in \Omega \) as an outcome of a single trial, and \(X(\omega) \) is just a mapping from the outcome of the trial to a complex vector.

\[
\mathbb{L}(y)
\]

\[
\hat{x} = W y
\]

Linear space of \{y\}

Figure 5.1: Geometry of random processes.

Just as in elementary geometry there is a Pythagorean relationship between \(x \), \(\hat{x}_{opt} \) and \(\hat{x} \).

Theorem 5.1.3. Pythagorean theorem:

\[
E[\| x - \hat{x}_{opt} \|^2] + E[\| \hat{x} \|^2] = E[\| x \|^2]
\]

Inner products: The following properties define an inner product.

1. Linearity: \(< \alpha_1 x_1 + \alpha_2 x_2, y > = \alpha_1 < x_1, y > + \alpha_2 < x_2, y > \) for \(\alpha_1, \alpha_2 \in \mathbb{C} \).
2. Reflexivity: \(< x, y > = < y, x >^* \)
3. Non degenerative: \(\| x \|^2 \triangleq < x, x > = 0 \iff x = 0 \)

Definition 5.1.1. (Linear Vector Spaces) A linear space \(\mathcal{V} \) whose elements are vectors, and a ring of scalars \(S \) through which the operation \(\alpha x \in \mathcal{V} \), for \(\alpha \in S \), \(x \in \mathcal{V} \) is well defined. Moreover the addition operator \(x + y \in \mathcal{V} \) for any \(x, y \in \mathcal{V} \) is also defined. \(\mathcal{V} \) is a linear space if given \(x, y, z \in \mathcal{V}, \alpha, \beta \in S \) the following are satisfied,

(i) \(x + y = y + x \)
(ii) \((x + y) + z = x + (y + z) \)
(iii) \(\alpha(x + y) = \alpha x + \alpha y \)
5.2. SUBOPTIMAL DETECTION: EQUALIZATION

(iv) \((\alpha + \beta)x = \alpha x + \beta x\)
(v) \((\alpha x) = \alpha (\beta x)\)
(vi) \(0 \cdot x = 0, 1 \cdot x = x\)

Usually \(S = \mathbb{C}\) in our application. Also, of importance is \(S = \{ \text{set of square } n \times n \text{ matrices} \} \) i.e., \(S = \mathbb{C}^{n \times n}\).

For vector valued random variables \(y, z \in \mathbb{C}^n\)

\[<y(\omega), z(\omega)> = \mathbb{E}[y(\omega)z^*(\omega)] \in \mathbb{C}^{n \times n}\]

If \(S = \mathbb{C}^{n \times n}\) (i.e., square matrices), then \(V\) is a linear space over \(S\), and is an inner product space since,

\[\mathbb{E}[ay^*] = (\mathbb{E}[yz^*])^*\]

and hence

\[<z, y> = <y, z>^*\]

also

\[\|y\|^2 = \mathbb{E}[yy^*] = 0 \iff y = 0 \text{ a.e. (almost everywhere)}\]

Hence as

\[<\alpha_1 x_1 + \alpha_2 x_2, y> = \alpha <x_1, y> + \alpha_2 <x_2, y>\]

for \(\alpha_1, \alpha_2 \in S\), clearly the space of vector valued random variables is a linear inner product space. Hence our geometric intuition of orthogonality is precise in this setting.

5.2 Suboptimal detection: Equalization

Let us consider the ISI channel setup introduced in Chapter 4, and illustrated in Figure 5.2. Let us start with just the matched filter output,

\[y_k = \sum_n x_n ||p|| <\hat{\varphi}_{n, q_{k-n}} + <z, \hat{\varphi}_k>,\]

which is written compactly as,

\[y_k = \sum_n x_n ||p|| q_{k-n} + z_k\]

or,

\[y_k = ||p|| x_k * q_k + z_k \quad (5.11)\]

In the “suboptimal” receivers, we are only interested in minimizing marginal measures, i.e., \(\mathbb{E}[e_k^2]\).

Thus, having colored noise does not change the principles. We could equivalently have worked with the output of the whitened filter (WMF) and done exactly what we will do next. Just for consistency with other notes, we will do it at the output of the matched filter rather than at the WMF.

All these results can be translated to the latter case and we leave this as an exercise for the students.

Basic idea: The output \(\{r_k\}\) is to make the equivalent channel as “close” to the AWGN channel as possible. The equalizer is composed of linear filtering blocks and the detection at the output \(r_x\) is done “symbol-by-symbol”. The complexity of decoding therefore does not grow exponentially with the channel length as in optimal decoding (MLSE, MAPSD). However, the price is paid in terms of performance. We will consider four kinds of structures:
CHAPTER 5. EQUALIZATION: LOW COMPLEXITY SUBOPTIMAL RECEIVERS

\[x(t) \xrightarrow{h(t)} \] \[\downarrow \] \[y(t) \] CHANNEL

Figure 5.2: The ISI channel.

\[y_k \xrightarrow{\text{Equalizer}} r_k \]

Figure 5.3: Structure of linear equalizer.

1. Zero-forcing equalizer (ZFE): Inverts the channel and eliminate ISI.

2. MMSE linear equalizer (MMSE-LE): Takes noise into account and “inverts” channel as best as possible in the presence of noise.

3. Zero-forcing decision feedback equalizer (ZF-DFE): Uses previous decisions to eliminates ISI and inverts channel.

4. MMSE Decision feedback equalizer (MMSE-DFE): Uses previous decisions to reduce ISI and takes into account presence of noise.

Notation (mnemonic): To re-iterate a point we made earlier about notation. We define the power spectrum and cross spectrum as,

\[S_{xx}(D) = \mathcal{D}\{E[x_kx_k^*] \}, \quad S_{xy}(D) = \mathcal{D}\{E[x_ky_k^*] \}, \quad (5.12) \]

where \(\mathcal{D}(\cdot) \) denotes the D-transform.

In this section, very often we denote the power spectrum and cross spectrum loosely as

\[S_{xx}(D) = \mathbb{E}[X(D)X^*(D^{-*})], \quad S_{xy}(D) = \mathbb{E}[X(D)Y^*(D^{-*})], \]

but this is an imprecise statement. What we really mean is the relationship in (5.12). This notation is really used as a mnemonic to easily write out relationships.

5.3 Zero-forcing equalizer (ZFE)

This is the simplest equalizer structure to understand and perhaps analyze. The basic idea is that, if we know that the transmitted symbols have been distorted by a known linear filter, then we can eliminate the distortion by just filtering the output through the inverse of the filter. Clearly this does not take into account the presence of additional noise and hence could result in noise enhancement.

Now recall from (5.11) that the output of the matched filter, \(y_k \), is given by,

\[y_k = ||p|| |(x_k * q_k) + z_k | \]

Hence in D-transform domain,

\[Y(D) = ||p||X(D)Q(D) + Z(D) \quad (5.13) \]
5.3. ZERO-FORCING EQUALIZER (ZFE)

This relationship (5.13) forms the starting point of all the equalization schemes. Now, if we invert the channel using $W_{ZFE}(D)$ given by

$$W_{ZFE}(D) = \frac{1}{||p||Q(D)}$$

we get,

$$R(D) = W_{ZFE}(D)Y(D) = \frac{1}{||p||Q(D)} ||p||X(D) + Z(D)$$

Hence we see that,

$$R(D) = X(D) + \frac{Z(D)}{||p||Q(D)}$$

Clearly, the ZFE, $W_{ZFE}(D)$, has eliminated the ISI, but it could have severely enhanced the noise, in that $\frac{1}{Q(D)}$ could actually be very large, and in the absence of noise this would not have mattered. However in the presence of noise, this could severely degrade the SNR.

5.3.1 Performance analysis of the ZFE

We have seen that the noise at the output of the matched filter has a PSD given by,

$$S_z(D) = N_0Q(D).$$

Normalized per real dimension this is

$$\hat{S}_z(D) = \frac{N_0}{2}Q(D).$$

Now, after the ZFE,

$$r_k = x_k + z_k^{ZFE}$$

where,

$$z_k^{ZFE} = D^{-1} \left[\frac{Z(D)}{||p||Q(D)} \right].$$

Hence, per dimension, the PSD of the noise z_k^{ZFE} is,

$$\hat{S}_z^{ZFE}(D) = \frac{N_0}{2}Q(D) \frac{1}{||p||Q(D)} \frac{1}{||p||Q^*(D^{-*})}$$

But

$$Q(D) = Q^*(D^{-*})$$
due to conjugate symmetry of \(\{q_t\} \).
Therefore,

\[
S_z ZFE(D) = \frac{N_0}{2} \frac{1}{||p||^2} Q(D) = \frac{N_0}{2} \frac{W_{ZFE}(D)}{||p||}.
\]

Now,

\[
\sigma^2_{ZFE} = \frac{T}{2\pi} \int_{-\pi}^{\pi} S_z ZFE(e^{-j\omega T}) d\omega = \frac{2}{N_0} \frac{W_{ZFE}(e^{-j\omega T}) d\omega}{||p||}
\]

Thus we have

\[
SNR_{ZFE} = \frac{\mathcal{E}_x}{\sigma^2_{ZFE}} = \frac{\mathcal{E}_x}{N_0 \frac{1}{||p||} w_{ZFE(0)}} = \frac{\left(\mathcal{E}_x ||p|| \right)}{N_0} \frac{1}{w_{ZFE(0)}}
\]

Noise enhancement: The basic problem occurs when \(Q(D) \) has zeroes close to the unit circle as seen in Figure 5.3.1. Hence, inverting \(Q(D) \) results in a “gain” that becomes large and hence enhances the noise power that was ignored.

5.4 Minimum mean squared error linear equalization (MMSE-LE)

In order to deal with the noise enhancement of the ZFE, we need to take into account the presence of noise. The first method is to modify the ZFE to take the noise into account, by finding a linear filter.
that minimizes the output noise variance.

\[e_k = x_k - w_k * y_k \]

(5.14)

The MMSE-LE attempts to find the linear filter according to the MMSE criterion applied to (5.14) as,

\[W_{MMSE-LE}(D) = \arg \min_{W(D)} \mathbb{E} \left[|e_k|^2 \right] \]

Now, we use the MMSE machinery we have developed in Section 5.1. We want to find \(W_{MMSE-LE}(D) \) such that MMSE of output is minimized. By using the orthogonality principle\(^2\) as in (5.5), we have,

\[\mathbb{E} \left[(X(D) - W_{MMSE-LE}(D)Y(D))(Y^*(D^{-*})) \right] = 0 \]

This gives us,

\[S_{xy}(D) = W_{MMSE-LE}(D)S_{yy}(D), \]

or

\[W_{MMSE-LE}(D) = \frac{S_{xy}(D)}{S_{yy}(D)} = \frac{||p||Q(D)\xi_x}{||p||^2Q(D)\xi_x + N_0Q(D)}. \]

giving us

\[W_{MMSE-LE}(D) = \frac{||p||\xi_x}{||p||^2Q(D)\xi_x + N_0} = \frac{1}{||p||Q(D) + \left(\frac{N_0}{||p||\xi_x}\right)} \]

(5.15)

Note that the difference between \(W_{MMSE-LE}(D) \) and \(W_{ZFE}(D) \) is the additive term in the denominator of (5.15). Even if \(Q(e^{-j\omega T}) = 0 \) for some \(\omega \), the gain of the \(W_{MMSE-LE}(D) \) does not blow up at these frequencies, as would \(W_{ZFE}(D) \). Note that as \(\frac{N_0}{\xi_x} \rightarrow 0 \) or SNR \(\rightarrow \infty \), the MMSE-LE tends towards the ZFE as one would expect.

5.4.1 Performance of the MMSE-LE

At the output of the MMSE-LE, the D-transform is,

\[
R(D) = W_{MMSE-LE}(D)Y(D)
\]

\[
= \frac{1}{||p|| \left(Q(D) + \frac{1}{SNR_{MFB}} \right)}X(D)Q(D)||p|| + \frac{Z(D)}{||p|| \left(Q(D) + \frac{1}{SNR_{MFB}} \right)}
\]

where, as defined in definition 4.2.2,

\[
SNR_{MFB} = \frac{\xi_x||p||^2}{N_0} = \frac{\xi_x||p||^2}{N_0/2}
\]

(5.16)

\(^2\)Again recall that the precise relationship is given in (5.5), but we use the mnemonic given in (5.6) for convenience of manipulation.
Therefore

\[R(D) = \left[\frac{Q(D)}{Q(D) + 1/SNR_{MFB}} \right] X(D) + \left[\frac{1}{||p|| (Q(D) + 1/SNR_{MFB})} \right] Z(D) \]

\[= \left\{ 1 - \frac{1/SNR_{MFB}}{Q(D) + 1/SNR_{MFB}} \right\} X(D) + Z'(D) \]

Where we have defined,

\[V(D) = \frac{||p||}{SNR_{MFB}}W_{MMSE-LE}(D) = \frac{1}{SNR_{MFB} \left[Q(D) + \frac{1}{SNR_{MFB}} \right]} \]

Writing it in time domain, we get

\[r_k = x_k - v_k * x_k + z'_k \]

Let us examine, the contribution of \(x_k \) in \((v_k * x_k) \),

\[v_k * x_k = \sum_n v_n x_{k-n} = v_0 x_k + \sum_{n \neq 0} v_n x_{k-n} \]

where the second term does not depend on \(x_k \).

Hence we have

\[r_k = x_k - v_0 x_k - \sum_{n \neq 0} v_n x_{k-n} + z'_k \]

yielding,

\[r_k = (1 - v_0)x_k + e'_k \]

Hence one would naturally have defined the detection SNR as,

\[SNR_{MMSE-LE,U} = \frac{E_x(1-v_0)^2}{E[|e'_k|^2]} \]

However, in the MMSE minimization, one computes \(E \left[|e_k|^2 \right] \), where

\[e_k = x_k - w_{MMSE-LE}(k) * y_k = x_k - r_k \]

Using this in (5.18),

\[e_k = v_0 x_k - e'_k \]

Hence \(\frac{E}{E[|e_k|^2]} \) is not the same as what a detector encounters in (5.18). Therefore, the discrepancy needs to be taken into account in the analysis of the MMSE-LE. Let us first calculate,

\[\sigma_{MMSE-LE}^2 = E \left[|e_k|^2 \right] \]

Similar to the ZFE analysis,

\[S_{EE}(D) = D \{ E \left[e_k e'_{k-1} \right] \} \]

\[= E_x - W_{MMSE-LE}(D^{**})S_{XY}(D) - W_{MMSE-LE}(D)S_{XX}^*(D^{**}) \]

\[+ W_{MMSE-LE}(D)S_{YY}(D)W_{MMSE-LE}^*(D^{**}) \]

\[= E_x - W_{MMSE-LE}(D)S_{YY}(D)W_{MMSE-LE}^*(D^{**}) \]
5.4. MINIMUM MEAN SQUARED ERROR LINEAR EQUALIZATION (MMSE-LE)

Now,
\[W_{\text{MMSE-LE}}(D) = \frac{|p||Q(D)|\mathcal{E}_x}{|p|^2Q^2(D) + N_0Q(D)} = \frac{1}{|p||Q(D) + 1/\text{SNR}_{MFB}|} \] (5.21)

and
\[S_{YY}(D) = |p|^2Q^2(D)\mathcal{E}_x + N_0Q(D) = \mathcal{E}_x|p|^2Q(D) \left[Q(D) + \frac{1}{\text{SNR}_{MFB}} \right] \] (5.22)

Inserting (5.21) and (5.22) into (5.20) we obtain
\[S_{EE}(D) = \mathcal{E}_x - \frac{\mathcal{E}_xQ(D)}{Q(D) + \frac{1}{\text{SNR}_{MFB}}} \]
\[= \frac{\mathcal{E}_x/\text{SNR}_{MFB}}{Q(D) + \frac{1}{\text{SNR}_{MFB}}} \]
\[= \frac{N_0}{|p||Q(D) + 1/\text{SNR}_{MFB}|} \] (5.23)

Now using (5.16) and (5.17) in (5.23), we get
\[S_{EE}(D) = \mathcal{E}_x V(D) = \frac{N_0}{|p|} W_{\text{MMSE-LE}}(D) \]

Hence
\[\mathbb{E}[|e_k|^2] = \sigma^2_{\text{MMSE-LE}} = \mathcal{E}_x v_0 = \frac{N_0}{|p|} w_{\text{MMSE-LE}}(0). \] (5.24)

But the performance really depends upon \(\mathbb{E}[|e'_k|^2] \) (see (5.18)). Now we relate them as,
\[\mathbb{E}[|e_k|^2] = v_0^2 \mathcal{E}_x + \mathbb{E}[|e'_k|^2] \]

Therefore,
\[\mathbb{E}[|e'_k|^2] = \mathbb{E}[|e_k|^2] - v_0^2 \mathcal{E}_x = \mathcal{E}_x v_0 - v_0^2 \mathcal{E}_x \] (5.25)

Thus \(\sigma^2_{\text{MMSE-LE},U} = \mathbb{E}[|e'_k|^2] \) is,
\[\sigma^2_{\text{MMSE-LE},U} = \mathcal{E}_x v_0[1 - v_0] \] (5.26)

Inserting (5.26) in (5.19) we get,
\[\text{SNR}_{\text{MMSE-LE}} = \frac{\mathcal{E}_x}{\sigma^2_{\text{MMSE-LE}}} = \frac{\mathcal{E}_x}{\mathcal{E}_x v_0} = \frac{1}{v_0} \]
\[\text{SNR}_{\text{MMSE-LE},U} = \frac{\mathcal{E}_x v_0(1 - v_0)^2}{\mathcal{E}_x v_0(1 - v_0)} = \frac{1 - v_0}{v_0} = \frac{1}{v_0} - 1 \]

Hence,
\[\text{SNR}_{\text{MMSE-LE}} = 1 + \text{SNR}_{\text{MMSE-LE},U} \] (5.27)
CHAPTER 5. EQUALIZATION: LOW COMPLEXITY SUBOPTIMAL RECEIVERS

The “biased” SNR, i.e., $SNR_{MMSE-LE}$ arises directly out of the calculation deriving that MMSE-LE. However, by looking at (5.18), one realizes that the detector actually works with a different SNR, i.e., $SNR_{MMSE-LE,U}$ and hence we need to be careful in finding the performance of the MMSE-LE to use the correct “noise” variance.

Till now we have considered two flavors of the equalizer structure. Both the ZFE and the MMSE-LE attempts to filter the received sequence through a linear filter ($W_{ZFE}(D)$ and $W_{MMSE-LE}(D)$ respectively) in order to convert the ISI problem to be “close” to an AWGN problem. The ZFE did that by inverting the channel, but could cause noise enhancement. The MMSE-LE took the noise into account, but it now has transmitted symbols as part of the “noise”. Can we take advantage of the fact that the noise contains some past/future transmitted symbols? This idea forms the basis of the decision feedback equalizer, which we study next.

5.5 Decision-feedback equalizer

The basic idea of decision feedback equalization comes from the realization that one could potentially use previous decisions while attempting to estimate the current symbol. The derivation and analysis of DFE requires us to make a strong assumption, that the decisions are indeed correct! Without this, the analysis of the DFE is still an open question. We will make this assumption and proceed with the DFE.

Criterion for the MMSE-DFE: The basic optimization problem is,

$$\min_{W(D), B(D), b_0=1} \mathbb{E} \left[|x_k - r_k'|^2 \right]$$

Notes:

1. In order to utilize past decisions, one should ensure that r_k depends only on the past symbols.

2. The feedforward filter $W(D)$ shapes the sequence $\{y_k\}$ in order to have only “trailing” ISI terms.

3. We have seen one structure that caused the equivalent channel to be causal, i.e., the whitened matched filter.
4. We need $B(D)$ such that, $B(D)$ is causal and monic, i.e.,

$$B(D) = 1 + b_1D + b_2D^2 + \ldots$$

which implies that

$$1 - B(D) = -\sum_{n=1}^{\infty} b_nD^n$$

and hence $X(D)[1 - B(D)]$ depends only on past decisions as shown in Figure 5.6.

Main steps in deriving the MMSE-DFE:

Step 1 Fix feedback filter $B(D)$ and find feedforward filter $W(D)$, in terms of $B(D)$, such that $\mathbb{E} \left[(x_k - r'_k)^2 \right]$ is minimized.

Step 2 Express result of operating $W(D)$ on $Y(D)$, i.e., express $W(D)$ in terms of $B(D)$ and set up linear prediction problem.

Step 3 Solve linear prediction problem to find the causal, $B(D)$ that minimizes $\mathbb{E} \left[(x_k - r'_k)^2 \right]$. And hence find the MMSE-DFE, i.e., $\{W(D), B(D)\}$.

Step 4 (Analysis) As in the MMSE-LE, remove the bias term to find the equivalent $\text{SNR}_{\text{MMSE-DFE}}$. We will first focus on step 1-3 to obtain the MMSE-DFE and then analyze its performance through step 4.

Step # 1:

Let us fix $B(D)$, and then find $W(D)$ that minimizes MMSE criterion. We can write the error $E(D)$ as,

$$E(D) = X(D) - \left\{ W(D)Y(D) + (1 - B(D))X(D) \right\}$$

Hence,

$$E(D) = B(D)X(D) - W(D)Y(D)$$

(5.28)

Now, to find $W(D)$ that minimizes $\mathbb{E} \left[|e_k|^2 \right]$, we use the orthogonality principle\(^3\) (see (5.5)) as,

$$\mathbb{E} \left[E(D)Y^*(D^-) \right] = \mathbb{E} \left[[B(D)X(D) - W(D)Y(D)]Y^*(D^-) \right] = 0$$

$$= B(D)S_{XY}(D) - W(D)S_{YY}(D) = 0$$

Hence,

$$W(D) = B(D) \frac{S_{XY}(D)}{S_{YY}(D)} = B(D)W_{\text{MMSE-LE}}(D) = \frac{B(D)}{||p|| \left(Q(D) + \frac{1}{\text{SNR}_{\text{MMSE}}} \right)}$$

(5.29)

Step # 2: Now, we express the resulting error in terms of $B(D)$ by substituting (5.29) in (5.28) as,

$$E(D) = B(D)X(D) - B(D)W_{\text{MMSE-LE}}(D)Y(D)$$

$$= B(D) \left[X(D) - W_{\text{MMSE-LE}}(D)Y(D) \right]$$

$$= (1 + B(D) - 1)U(D) = U(D) - [1 - B(D)]U(D)$$

\(^3\)Again recall that the precise relationship is given in (5.5), but we use the mnemonic given in (5.6) for convenience of manipulation.
CHAPTER 5. EQUALIZATION: LOW COMPLEXITY SUBOPTIMAL RECEIVERS

where \(1 - B(D)\) is a strictly causal sequence. Now, this is exactly like the linear prediction problem that we studied in Section 5.1.3, where we want to predict the sequence \(\{u_k\} = D^{-1}(U(D))\).

Step \# 3: In Section 5.1.3, we studied the linear prediction problem and we found the optimal linear predictor as,

\[
B_{\text{opt}}(D) = \frac{1}{L(D)}
\]

where

\[
S_U(D) = \Gamma_U L(D)L^*(D^{-*})
\]

through spectral factorization. Now let us find \(S_U(D)\).

\[
S_U(D) = \mathbb{E} \left[|X(D) - W_{\text{MMSE-LE}}(D)Y(D)| |X^*(D^{-*}) - W_{\text{MMSE-LE}}^*(D^{-*})Y^*(D^{-*})| \right] \\
\overset{(a)}{=} S_{XX}(D) - W_{\text{MMSE-LE}}^*(D^{-*})S_{YY}(D)W_{\text{MMSE-LE}}(D)
\]

where (a) follows because \(W_{\text{MMSE-LE}}(D) = \frac{S_{XY}(D)}{S_{YY}(D)}\)

Hence,

\[
S_U(D) = \mathbb{E}_x - \frac{\mathbb{E}_x Q(D)}{Q(D) + \frac{1}{\text{SNR}_{\text{MFB}}}} \\
= \frac{N_0/||p||^2}{Q(D) + \frac{1}{\text{SNR}_{\text{MFB}}}} \\
\overset{(b)}{=} \Gamma_U L(D)L^*(D^{-*})
\]

where (b) is the spectral factorization, with \(L(D)\) being causal, monic and minimum phase.

Then we get

\[
B_{\text{opt}}(D) = \frac{1}{L(D)}
\]

which is still causal, monic and stable. Hence

\[
S_E(D) = B(D)S_U(D)B^*(D^{-*}) \\
= \frac{1}{L(D)} \Gamma_U L(D)L^*(D^{-*}) \frac{1}{L^*(D^{-*})} \\
= \Gamma_U
\]

Alternatively, if

\[
Q(D) + \frac{1}{\text{SNR}_{\text{MFB}}} = \gamma_0 G(D)G^*(D^{-*}) \tag{5.30}
\]

then

\[
S_U(D) = \frac{N_0/||p||^2}{Q(D) + \frac{1}{\text{SNR}_{\text{MFB}}}} = \frac{N_0/||p||^2}{\gamma_0 G(D)G^*(D^{-*})}
\]

Thus in this notation, \(\Gamma_U = \frac{N_0}{||p||^2\gamma_0}\), \(L(D) = \frac{1}{G(D)}\) then

\[
B_{\text{opt}}(D) = G(D). \tag{5.31}
\]
5.5. DECISION-FEEDBACK EQUALIZER

Now, let us substitute this in (5.29) to get,

$$W_{opt}(D) = B_{opt}(D)W_{MMSE-LE}(D) \tag{5.32}$$

$$= G(D) \frac{1}{||p||} \left(Q(D) + \frac{1}{SNR_{MF}} \right)$$

$$= G(D) \frac{1}{||p||} \gamma_0 G(D) G^*(D-\omega)$$

$$= \frac{1}{||p||} \gamma_0 G^*(D-\omega)$$

So, the main computation is to figure out the spectral factorization of $$Q(D) + \frac{1}{SNR_{MF}}$$. For the choice of $$B_{opt}(D)$$ and $$W_{opt}(D)$$, the error spectrum is:

$$S_{EE}(D) = B_{opt}(D)S_U(D)B^*(D-\omega)$$

$$= \Gamma_U = \frac{N_0}{\gamma_0 ||p||^2} \tag{5.33}$$

5.5.1 Performance analysis of the MMSE-DFE

First the PSD of the error sequence is,

$$S_{EE}(D) = \frac{N_0}{\gamma_0 ||p||^2}$$

hence the per-dimension PSD is

$$S_{EE}(D) = \frac{N_0/2}{\gamma_0 ||p||^2}$$

Thus, the error sequence of the MMSE-DFE (with no decision error propagation) is white, when it is minimized.

Now, to compute $$\gamma_0$$ we illustrate this with the following. Let us assume that we have a rational spectrum $$S(D)$$, i.e.,

$$S(D) = \gamma_0 \prod_{k=1}^{M} (1 - c_k D)(1 - c_k^* D^{-1}) \prod_{k=1}^{N} (1 - d_k D)(1 - d_k^* D^{-1}) \tag{5.34}$$

Claim 5.5.1. For $$S(D)$$ of the form given in (5.34)

$$\frac{T}{2\pi} \int_{-\pi/T}^{\pi/T} \ln S(e^{-j\omega T})d\omega = \ln \gamma_0$$

if the finite energy constraint is satisfied, i.e.,

$$R(0) = \frac{T}{2\pi} \int_{-\pi/T}^{\pi/T} S(e^{-j\omega T})d\omega < \infty$$

Notes:

1. This result actually holds in more generality than just rational spectrum, but we do the proof under this restrictive assumption.

2. The finite energy constraint for rational spectra is equivalent to saying that there are no poles of $$S(D)$$ on the unit circle.
CHAPTER 5. EQUALIZATION: LOW COMPLEXITY SUBOPTIMAL RECEIVERS

Proof:

\[
\frac{T}{2\pi} \int_{-\pi/T}^{\pi/T} \ln S(e^{j\omega}) d\omega = \ln \gamma_0 + \sum_{k=1}^{M} \frac{T}{2\pi} \int_{-\pi/T}^{\pi/T} \ln(1 - c_k e^{-j\omega}) d\omega + \sum_{k=1}^{M} \frac{T}{2\pi} \int_{-\pi/T}^{\pi/T} \ln(1 - c_k^* e^{j\omega}) d\omega - \sum_{k=1}^{N} \frac{T}{2\pi} \int_{-\pi/T}^{\pi/T} \ln(1 - d_k e^{-j\omega}) d\omega - \sum_{k=1}^{N} \frac{T}{2\pi} \int_{-\pi/T}^{\pi/T} \ln(1 - d_k^* e^{j\omega}) d\omega
\]

(5.35)

Now, if \(a \in \mathbb{C}, |a| \leq 1, a = |a| e^{j\phi_a} \)

\[
\frac{T}{2\pi} \int_{-\pi/T}^{\pi/T} \ln[1 - ae^{-j\omega}] [1 - a^* e^{j\omega}] d\omega = \frac{T}{2\pi} \int_{-\pi/T}^{\pi/T} \ln[1 + |a|^2 - 2|a| \cos(\omega - \phi_a)] d\omega
\]

(a) \(= 0 \)

where (a) follows from standard integral tables.

Inserting this in (5.35) we get

\[
\frac{T}{2\pi} \int_{-\pi/T}^{\pi/T} \ln S(e^{j\omega}) d\omega = \ln \gamma_0
\]

This formula is called the Szego formula.

\[\square\]

Using the Szego formula for the MMSE-DFE, i.e., using it in (5.33) we obtain

\[
\sigma_{MMSE-DFE}^2 = \frac{N_0/2}{|p|^2} \exp[-\frac{T}{2\pi} \int_{-\pi/T}^{\pi/T} \ln \left(Q(e^{-j\omega}) + \frac{1}{SNR_{MFB}}\right) d\omega]
\]

This is called Salz formula as it was derived by Salz in 1973. Hence we get,

\[
SNR_{MMSE-DFE} = \frac{E_x}{\sigma_{MMSE-DFE}^2}
\]

\[
= SNR_{MFB} \exp[-\frac{T}{2\pi} \int_{-\pi/T}^{\pi/T} \ln \left(Q(e^{-j\omega}) + \frac{1}{SNR_{MFB}}\right) d\omega]
\]

\[
= \gamma_0 SNR_{MFB} = \frac{\gamma_0 |p|^2 E_x}{N_0}
\]

Now, we have issue of “bias”, i.e., to check whether this SNR_{MMSE-DFE} is the right quantity to examine.\(^4\) Let us first find out if we have a biased receiver.

\[
R'(D) = R(D) + [1 - R(D)] X(D)
\]

\[
= W(D) Y(D) + X(D) - B(D) X(D)
\]

\[
= X(D) - (B(D) X(D) - W(D) Y(D))
\]

\[
= X(D) - E(D)
\]

\(^4\)This was the same issue investigated in the MMSE-LE.
The receiver makes decisions on x_k, based on r'_k

$$R'(D) = X(D) - \left[\frac{G(D)X(D)}{||p||\gamma_0 G^*(D^{-\ast})} - \frac{1}{||p||\gamma_0 G^*(D^{-\ast})} Y(D) \right]$$

$$= X(D) - \left[\frac{G(D)X(D)}{||p||\gamma_0 G^*(D^{-\ast})} - \frac{1}{||p||\gamma_0 G^*(D^{-\ast})} \frac{Z(D)}{Y(D)} \right]$$

$$= \left\{ 1 - \frac{Q(D)}{\gamma_0 G^*(D^{-\ast})} \right\} X(D) + \frac{1}{||p||\gamma_0 G^*(D^{-\ast})} Z(D)$$

$$= \left\{ 1 - \frac{\frac{SNR_{MMSE}}{\gamma_0 G^*(D^{-\ast})}}{1 - V(D)} \right\} X(D) + \frac{1}{||p||\gamma_0 G^*(D^{-\ast})} Z(D)$$

Where (a) follows due to (5.30) and we have defined

$$V(D) = \frac{SNR_{MMSE}}{\gamma_0 G^*(D^{-\ast})}$$

Note that $V(D) = \frac{SNR_{MMSE}}{\gamma_0 G^*(D^{-\ast})}$ is a purely anti-causal filter. Therefore, in a manner identical to what we did for the MMSE-LE,

$$r'_k = (1 - v_0)x_k - \sum_{n \neq 0} v_0 x_{k-n} + z'_k$$

Hence,

$$r'_k = (1 - v_0)x_k + e'_k$$

Hence, we again have a biased receiver, and the SNR measure that reflects error probability needs to take this into account. Note that since

$$E(D) = X(D) - R'(D)$$

In time domain,

$$e_k = v_0 x_k - e'_k$$

And therefore for the same reason as in the MMSE-LE, the $SNR_{MMSE-DFE}$ is not the right measure to use for detecting SNR. Hence we need to find $E[|e'_k|^2]$ and to do that first we find $E[|e_k|^2]$ as,

$$E[|e_k|^2] = \sigma_{MMSE-DFE}^2 = v_0^2 e_x + E[|e'_k|^2]$$

Hence,

$$\sigma_{MMSE-DFE}^2 = \sigma_{MMSE-DFE,U}^2 = \sigma_{MMSE-DFE}^2 - v_0^2 e_x = \frac{N_0}{||p||^2\gamma_0} - v_0^2 e_x$$

(5.37)

Since from (5.36)

$$V(D) = \frac{1}{SNR_{MBE}} \frac{1}{\gamma_0 G^*(D^{-\ast})}$$
and $G^*(D^{-*})$ is monic and anti-causal, therefore so is $\frac{1}{G^*(D^{-*})}$,

$$v_0 = \frac{1}{\text{SNR}_{MFB}} \frac{1}{\gamma_0} = \frac{N_0}{||p||^2 \mathcal{E}_x} \frac{1}{\gamma_0}$$

Therefore

$$\frac{1}{\gamma_0} = \frac{||p||^2 \mathcal{E}_x}{N_0} v_0$$

Using this in (5.33) we see that

$$\sigma_{\text{MSE-DFE}}^2 = v_0 \mathcal{E}_x$$

Inserting this in (5.37), we get

$$\sigma_{\text{MSE-DFE, U}}^2 = \mathcal{E}_x v_0 - v_0^2 \mathcal{E}_x = v_0 \mathcal{E}_x (1 - v_0)$$

And hence we get the more informative SNR,

$$\text{SNR}_{\text{MSE-DFE, U}} = \frac{(1 - v_0)^2 \mathcal{E}_x}{v_0 (1 - v_0)} \mathcal{E}_x = \frac{1}{v_0} - 1 = \text{SNR}_{\text{MSE-DFE}} - 1$$

Therefore we have

$$\text{SNR}_{\text{MSE-DFE}} = \text{SNR}_{\text{MSE-DFE, U}} + 1 \quad (5.38)$$

Notice the similarity in the relationship in (5.38) and (5.27). In both cases the unbiased SNR and the biased SNR differ by 1. This turns out to be a fundamental relationship between the SNR of biased and unbiased detectors.

Note that the error sequence $\{e'_k\}$ is not in general white, even with the correct past decision assumption. Again, the main calculating in finding $\text{SNR}_{\text{MSE-DFE, U}}$ is to find the spectral factorization of $[Q(D) + \frac{1}{\text{SNR}_{MFB}}]$ and by using γ_0 found from it we can obtain v_0 and hence $\text{SNR}_{\text{MSE-DFE, U}}$.

5.5.2 Zero forcing DFE

We can find the ZF-DFE forward and feedback filters by simply setting $\text{SNR}_{MFB} \to \infty$ in the expressions derived in the MMSE-DFE. Therefore we do a spectral factorization of

$$Q(D) = \eta_0 P_c(D) P^*_c(D^{-*})$$

and set the feed forward and feedback filters of the ZF-DFE as,

$$W(D) = \frac{1}{\eta_0 ||p|| P^*_c(D^{-*})}, \quad B(D) = P_c(D) \quad (5.39)$$

It is not immediately clear what criterion the zero-forcing DFE is operating on. The zero-forcing DFE is the direct extension of the algebraic argument that led to the ZFE. In the ZFE, we observed that in the absence of noise,

$$Y(D) = ||p|| Q(D) X(D) \quad (5.40)$$

and hence we can solve this algebraic equation for x_k by “inverting” the channel, i.e., $W_{ZFE}(D) = \frac{1}{||p|| Q(D)}$. The zero-forcing DFE also solves an algebraic equation, where we further assume that previous symbols, x_{k-1}, \ldots are known. The result of solving (5.40) for x_k, given previous symbols is exactly what
the ZF-DFE is doing. In order to observe this, let us use (5.39) and examine its effect on r_k and r_k'. Since the structure of the ZF-DFE is the same as Figure 5.6, at the output of the feedforward filter we have,

$$R(D) = W(D)Y(D) = \frac{1}{\eta_0||p||P_c^*(D^{-1})} \| p \| Q(D)X(D) + \frac{1}{\eta_0||p||P_c^*(D^{-1})} Z(D)$$

(5.41)

where (a) follows from (5.39). Now, notice that since $R'(D) = R(D) + [1 - B(D)] X(D)$,

$$r_k' = x_k + z_k,$$

(5.42)

which has eliminated the inter-symbol interference. Therefore, in the absence of noise, we would have solved the algebraic equation (5.40) for x_k. Notice that the power spectral density $S_{z'}(D)$ of the modified noise process $Z'(D)$ in (5.42) is,

$$S_{z'}(D) = \frac{1}{\eta_0||p||^2 P_c(D)P_c^*(D^{-1})} S_z(D) = \frac{N_0Q(D)}{\eta_0||p||^2 Q(D)} = \frac{N_0}{\eta_0||p||^2},$$

(5.43)

i.e., it is white! Therefore we have converted the problem into (5.42) which is like the AWGN channel we studied in Chapter 2. However, the caveat is of course that we have assumed perfect decision feedback. We will study how to remove that assumption using a technique described in Section 6.1.

5.6 Fractionally spaced equalization

We have till now assumed perfect synchronization, i.e., we know exactly when the sampling at the output of the WMF occurs. Suppose we think that sampling occurs at kT, but it occurs at $kT + t_0$. Then the equivalent channel is

$$y(kT + t_0) = \sum_{m} x_m ||p||q(kT - mT + t_0) + z(kT + t_0)$$

Therefore we are sampling $q(t + t_0)$ at kT, and we design equalizers assuming that it was $q(t)$, hence the equivalent channel is $Q(\omega)e^{-j\omega t_0}$ which could cause loss in performance. One solution is to work with Nyquist sampling and collecting sufficient statistics by this method.

There are several motivations to collect sufficient statistics through Nyquist sampling. One, is as explained above, is due to robustness to timing errors. Another more subtle reason is that in practice, the channel is unknown to the receiver and one needs to estimate the channel. We will learn channel estimation methods in Section 6.3. Therefore, we may not be able to form the matched filter to collect sufficient statistics. Given this, we need a channel independent method to do so, and Nyquist sampling gives us such a tool. By sampling at Nyquist rate, we actually sample at higher than the symbol rate T, and therefore sometimes the terminology “oversampling” is used for this.

Let,

$$y_i(k) = y\left(kT - \frac{iT}{L}\right), i = 0, \ldots, L - 1$$

(5.44)

Hence, in transform domain,

$$Y_i(D) = P_i(D)X(D) + Z_i(D), i = 0, \ldots, L - 1$$

Where,

$$P_i(D) = D[p_i(k)]$$
CHAPTER 5. EQUALIZATION: LOW COMPLEXITY SUBOPTIMAL RECEIVERS

\[p_i(k) = [h(t) \ast \varphi(t)]_{t=kT-T} \]

and

\[z_i(k) = z \left(kT - \frac{iT}{L} \right) \]

Stacking up all the “oversampled” or fractionally sampled versions, one obtains

\[Y(D) = \begin{bmatrix} Y_0(D) \\ \vdots \\ Y_{L-1}(D) \end{bmatrix} = \begin{bmatrix} P_0(D) \\ \vdots \\ P_{L-1}(D) \end{bmatrix} X(D) + \begin{bmatrix} Z_0(D) \\ \vdots \\ Z_{L-1}(D) \end{bmatrix} \]

Which in more compact notation is,

\[Y(D) = P(D)X(D) + Z(D) \]

The equalizer structure can now be a row vector

\[W(D) = [W_0(D), \ldots, W_{L-1}(D)] \]

and the output of the equalizer is

\[R(D) = W(D)Y(D) = W(D)P(D)X(D) + W(D)Z(D) \]

Again, from basic linear estimation principles, the fractionally spaced MMSE-LE can be found by orthogonality principle,

\[E \left[E(D)Y^*(D^-) \right] = 0 \]

This gives,

\[E \left[[X(D) - W_{MMSE-LE}(D)Y(D)]Y^*(D^-) \right] = 0 \]

Yielding,

\[W_{MMSE-LE}(D) = \frac{E \left[X(D)Y^*(D^-) \right] E \left[Y(D)Y^*(D^-) \right]^{-1}}{E \left[Y(D)Y^*(D^-) \right]} = \frac{E \left[X(D) \right] E \left[Y(D) \right]^{-1} + LN_0}{E \left[Y(D) \right]^{-1}} \]

Note that the equalization is done and then the output is downsampled, and this alleviates some of the problems of timing offset.
5.7. **FINITE-LENGTH EQUALIZERS**

5.6.1 Zero-forcing equalizer

An interesting feature of the fractionally-spaced case is the special case of the zero-forcing equalizer. Here we need

\[W_{ZF}(D)P(D) = 1 = \sum_{i=0}^{L-1} W_i(D)P_i(D) \]

(5.45)

Now the interesting aspect of this is that one can have \(W_i(D) \) which are finite length polynomials and still be able to satisfy (5.45). This implies that for this case one is able to “convert” the channel without infinite length “inverses”! This is really because we only need the downsampled version of the equalizer output to behave like a discrete-time delta function.

Theorem 5.6.1 (Bezout identity). If \(\{P_i(D)\}_{i=0}^{L-1} \) do not share common zeros, then there exists a vector polynomial (of finite degree)

\[W(D) = [W_0(D), \ldots, W_{L-1}(D)] \]

such that

\[W(D)P(D) = 1 \]

Remarks:

1. In fact this condition is a necessary and sufficient condition, i.e., \(\{P_i(D)\}_{i=0}^{L-1} \) do not share common zeros (are co-primes) iff there exists a polynomial vector \(W(D) \) such that \(W_{ZF}(D)P(D) = 1 \).

2. This result was shown first by Sylvester (1840) as a test for co-primeness.

3. This shows that there exists a finite-impulse response inverse to the vector channel if the vector channel satisfies the regularity condition of Theorem 5.6.1. Again this inverse is only after “down-sampling”.

4. One can also have fractionally spaced decision-feedback equalizer, where the feedforward section operates in fractional spacing and the feedback section is symbol spaced. We will learn more about such structures in the context of finite length equalizers in Section 5.7.

5.7 Finite-length equalizers

In practice one can only implement finite length filters using digital signal processors. One way is to “truncate” the infinite length filters we have derived till now and implement them. However, a more principled approach is to start with the requirement of finite length filtering and derive the optimal finite length filters for equalization. Again, we use oversampled version of the receiver, as done in (5.44).

\[y(kT - \frac{itT}{L}) = \sum_m x_mp(kT - \frac{iT}{L} - mT) + z(kT - \frac{itT}{L}), i = 0, \ldots, L - 1 \]

We define,

\[y_k = \begin{bmatrix} y(kT) \\ \vdots \\ y(kT - \frac{L-1}{L}T) \end{bmatrix} = \sum_m x_m \begin{bmatrix} p(kT - mT) \\ \vdots \\ p(kT - \frac{L-1}{L}T - mT) \end{bmatrix} + \begin{bmatrix} z(kT) \\ \vdots \\ z(kT - \frac{L-1}{L}T) \end{bmatrix} \]

(5.46)
Hence in more compact notation,

\[y_k = \sum_n p_n x_{k-n} + z_k \]

Assumption: We impose the condition that the pulse response is of finite duration i.e.,

\[p(t) = 0 \quad \text{for} \quad t \notin [0, \nu T] \]

which implies that

\[p_k = 0 \quad \text{for} \quad k < 0 \quad \text{and} \quad k > \nu. \]

Note that in practice this is a reasonable assumption since most “real-world” channels are approximately time-limited.

Thus using this assumption (5.46) becomes

\[y_k = \begin{bmatrix} x_k & \vdots & x_{k-\nu} \end{bmatrix} \begin{bmatrix} p_0 & p_1 & \cdots & p_\nu \end{bmatrix} + z_k. \]

Now, we collect \(N_f \) samples of \(y_k \), i.e., a frame of \(N_f + \nu \) transmitted symbols as,

\[Y_k = \begin{bmatrix} y_k \\ y_{k-1} \\ \vdots \\ y_{k-N_f+1} \end{bmatrix} = \begin{bmatrix} p_0 & p_1 & \cdots & p_\nu & 0 & 0 & \cdots & 0 \\ 0 & p_0 & \cdots & p_\nu & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & p_0 & p_1 & \cdots & p_\nu \end{bmatrix} \begin{bmatrix} x_k \\ x_{k-1} \\ \vdots \\ x_{k-N_f-\nu+1} \end{bmatrix} + \begin{bmatrix} z_k \\ z_{k-1} \\ \vdots \\ z_{k-N_f-\nu+1} \end{bmatrix} \]

This is the basic model that will be used for finite length equalization. This model is like the basic relationship (5.11) seen in Section 5.2.

5.7.1 FIR MMSE-LE

In this section we derive a finite length MMSE linear equalizer, i.e., the equalizer is restricted to operate on \(N_f \) symbol times, or \(N_f L \) samples of received sequence. Therefore, the equalizer is a \(N_f L \) dimensional row vector applied to the received (sampled) vector \(Y_k \).

\[r_k = w Y_k \]

where \(w \in \mathbb{C}^{1 \times N_f L} \).

Since one cannot implement a non-causal filter, the system has to be designed for a given delay, i.e., the equalized output \(r_k \), is close to \(x_{k-\Delta} \), where \(\Delta \) is the delay. Note that for infinite filters we did not consider this issue, though a delay was implicitly assumed since we can only implement causal systems. Hence the equalizer works by minimizing the following error:

\[e_k = x_{k-\Delta} - r_k. \]

For the FIR MMSE-LE, the criterion is

\[w(\Delta) = \arg \min_w \mathbb{E} \left[|e_k|^2 \right] \]

Using the orthogonality principle,

\[\mathbb{E} [e_k Y_k^\ast] = 0 \]
To find \(w \), we use this orthogonality principle as,

\[
\mathbb{E} [x_k - \Delta Y_k^*] = w_{opt}(\Delta) \mathbb{E} [Y_k Y_k^*]
\]

where

\[
R_{YY} = \mathbb{E} [Y_k Y_k^*]
\]

is the auto-correlation matrix.

\[
R_{YX}(\Delta) = \mathbb{E} [Y_k X_{k-\Delta}]^*
\]

is the cross-correlation matrix, and hence,

\[
w_{opt}(\Delta) = R_{XY}(\Delta) R_{YY}^{-1}
\]

In more detail,

\[
R_{XY}(\Delta) = \mathbb{E} [x_k - \Delta (X_k^*P^* + Z_k^*)]
\]

\[
= [0 \ldots 0 \varepsilon_x \varepsilon_x \ldots 0] P^*_{1^\text{st position}}
\]

\[
= \varepsilon_x [0 \ldots 0 \ p^*_{0^\text{th position}} \ldots p^*_{0^\text{th position}}]
\]

Let

\[
\mathbf{1}_\Delta = [0, \ldots, 0, 1, 0, \ldots, 0]^* \in \mathbb{C}^{N_f + \nu},
\]

where the 1 occurs in the \((\Delta + 1)\)th position. Hence,

\[
R_{XY}(\Delta) = \varepsilon_x \mathbf{1}_\Delta P^*
\]

Also,

\[
R_{YY} = \mathbb{E} [P X_k X_k^* P^*] + \mathbb{E} [Z_k Z_k^*]
\]

\[
= \varepsilon_x P P^* + LN_0 I_{N_f L}.
\]

One finds \(\Delta \) by choosing the setting that minimized \(\sigma^2_{\text{MMSE-LE}} \), the MMSE for the FIR equalizer.

Now, to compute the MMSE of the finite length equalizer we can write

\[
\sigma^2_{\text{MMSE-LE}} = \mathbb{E} \| x_k - \Delta - w(\Delta) Y_k \|^2
\]

\[
= \varepsilon_x - R_{XY}(\Delta) R_{YY}^{-1} R_{XY}(\Delta)
\]

\[
= \varepsilon_x - w_{opt}(\Delta) R_{XY}(\Delta)
\]

\[
= \varepsilon_x - \varepsilon_x \mathbf{1}_\Delta P^* \left[\varepsilon_x P P^* + LN_0 I_{N_f L} \right]^{-1} P \mathbf{1}_\Delta \varepsilon_x
\]

\[
\overset{(a)}{=} \mathbf{1}_\Delta \left\{ \varepsilon_x I_{N_f L} + \varepsilon_x P^* \left[\varepsilon_x P P^* + LN_0 I_{N_f L} \right]^{-1} P \varepsilon_x \right\} \mathbf{1}_\Delta
\]

(5.48)

where (a) follows because

\[
\mathbf{1}_\Delta \mathbf{1}_\Delta = 1.
\]

Now the matrix inversion lemma (Woodbury’s identity) gives
Lemma 5.7.1. *(Matrix inversion lemma)* Given matrices A, B, C,

\[
[A + BCB^*]^{-1} = A^{-1} - A^{-1}B(C^{-1} + B^*A^{-1}B)^{-1}B^*A^{-1}
\]

By identifying,

\[
A^{-1} = E_{x}I_{N_f + \nu}, \quad B = P^*, \quad C^{-1} = LN_0I_{N_f L}
\]

in Lemma 5.7.1 and using this in (5.48), we get,

\[
\sigma_{MMSE-LE}^2 = \mathbb{E}_{x} \left\{ E_{x}^{-1}I_{N_f + \nu} + P^*P \frac{1}{N_0L} \right\}^{-1}
\]

\[
= N_0L\mathbb{E}_{x} \left\{ P^*P + \frac{N_0LN_0L}{E_{x}I_{N_f + \nu}} \right\}^{-1}
\]

\[
= N_0L\mathbb{E}_{x} Q(\Delta)\mathbb{E}_{x}
\]

Therefore the smallest $\sigma_{MMSE-LE}^2$ occurs by choosing the Δ corresponding to the smallest diagonal element of $Q(\Delta)$. Therefore the optimal delay can be easily identified by just one matrix inversion.

5.7.2 FIR MMSE-DFE

The FIR MMSE-DFE (see Figure 5.8), is similar to the FIR MMSE-LE except that there is now a symbol spaced feedback filter which is also of finite length N_b, which filter the past decisions \{\hat{x}_{k-\Delta-1}, \ldots, \hat{x}_{k-\Delta-N_b}\},

\[
e_k = x_{k-\Delta} - \left\{ [b_1, \ldots, b_{N_b}] \left[\begin{array}{c} \hat{x}_{k-\Delta-1} \\ \vdots \\ \hat{x}_{k-\Delta-N_b} \end{array} \right] + wY_k \right\}
\]

As in the earlier MMSE-DFE setting, we derive the DFE assuming correct past decisions. Let

\[
b = [1, -b_1, -b_2, \ldots, -b_{N_b}]
\]

and

\[
X_{k-\Delta-N_b}^{k-\Delta} = \left[\begin{array}{c} x_{k-\Delta} \\ x_{k-\Delta-1} \\ \vdots \\ x_{k-\Delta-N_b} \end{array} \right]
\]
Therefore we can write,

\[e_k = x_{k-\Delta} - \left\{ [b_1, \ldots, b_{N_b}] \begin{bmatrix} \hat{x}_{k-\Delta-1} \\ \vdots \\ \hat{x}_{k-\Delta-N_b} \end{bmatrix} \right\} + wY_k \]

\[= [1, -b_1, \ldots, -b_{N_b}] \begin{bmatrix} x_{k-\Delta} \\ \vdots \\ \hat{x}_{k-\Delta-N_b} \end{bmatrix} - wY_k \]

\[\overset{(a)}{=} bX_{k-\Delta-N_b}^k - wY_k \]

where (a) follows due to perfect decision feedback assumption.

FIR MMSE-DFE criterion:

\[\{ b_{\text{opt}}, w_{\text{opt}} \} = \arg b, w \min \mathbb{E} [|e_k|^2] \]

\[= \arg \left\{ \min_b \min_w \mathbb{E} [|e_k|^2] \right\} \]

That is, we do the minimization in a nested manner just like in the infinite length case. First let us fix \(b \) and find \(w \) in terms of \(b \). To do that, apply orthogonality principle

\[\mathbb{E} [e_k Y_k^*] = 0 \]

which gives,

\[\mathbb{E} \left[\{ bX_{k-\Delta-N_b}^k - wY_k \} Y_k^* \right] = 0 \]

or

\[w \mathbb{E} [Y_k Y_k^*] = b \mathbb{E} [X_{k-\Delta-N_b}^k Y_k^*] \]

(5.50)

Now, let us find the terms in (5.50)

\[\mathbb{E} [X_{k-\Delta-N_b}^k Y_k^*] = \mathbb{E} \left[\begin{bmatrix} x_{k-\Delta} \\ \vdots \\ x_{k-\Delta-N_b} \end{bmatrix} \begin{bmatrix} x_k \\ \vdots \\ x_{k-N_f-\nu+1} \end{bmatrix} + Z_k \right] \]

\[\overset{\Delta}{=} \mathbb{E} J_{\Delta} P^* \]

Now, let us write \(J_{\Delta} \) in more detail. First let us assume that \(x_{k-\Delta} \) occurs in the information window, i.e.,

\[\Delta \leq N_f + \nu - 1 \]

then \(J_{\Delta} \neq 0 \) for i.i.d. symbols \(\{ x_k \} \). Now the question is whether \(x_{k-\Delta-N_b} \) occurs before or after \(x_{k-N_f+1-\nu} \).
Case I: \(\Delta + N_b \leq N_f + \nu - 1 \)

Then \(x_k - \Delta - N_b \) occurs in the information window \(\{x_k, \ldots, x_{k-N_f-\nu+1}\} \) and this is the “easy” case.

\[
\mathbf{J}_\Delta = \frac{1}{\mathcal{E}_x} \mathbb{E} \left[\begin{bmatrix}
 x_k - \Delta \\
 \vdots \\
 x_{k-N_f-\nu+1} \\
 x_k - \Delta - N_b
\end{bmatrix} \right] \left[\begin{bmatrix}
 x_k - \Delta \\
 \vdots \\
 x_{k-N_f-\nu+1} \\
 x_k - \Delta - N_b
\end{bmatrix} \right] \quad (5.51)
\]

\[
= \begin{bmatrix}
 \mathbf{0}_{(N_b+1) \times \Delta}, & \mathbf{I}_{(N_b+1) \times (N_f+\nu-1-\Delta-N_b)} & \mathbf{0}_{(N_b+1) \times (N_f+\nu-1-\Delta-N_b)}
\end{bmatrix}
\]

Case II: \(\Delta + N_b > N_f + \nu - 1 \)

Then \(x_k - \Delta - N_b \) does not appear in the observation window of information and therefore we have a truncation at the end. Hence the observation looks like,

\[
\{x_k, \ldots, x_k-\Delta, \ldots, x_k-N_f-\nu+1, \ldots, x_k-\Delta-N_b\}
\]

observation window \(\mathbf{x}_k \)

And we have

\[
\mathbf{X}^{k-\Delta}_{k-\Delta-N_b} = \begin{bmatrix}
 x_k - \Delta \\
 \vdots \\
 x_{k-N_f-\nu+1} \\
 \vdots \\
 x_k - \Delta - N_b
\end{bmatrix}
\]

Therefore, the \(\mathbf{b} \) that needs to be used is also truncated since, \(\{x_k-N_f-\nu, \ldots, x_k-\Delta-N_b\} \) are not part of the observation window. This is really the edge effect that we need to be aware of. One can easily calculate the correct \(\mathbf{b} \) for this case by now choosing a shorter decision feedback window size, \(i.e., \)

\[
\begin{bmatrix}
 x_k - \Delta \\
 \vdots \\
 x_{k-N_f-\nu+1}
\end{bmatrix}
\]

of length \((N_f + \nu - \Delta) \), and setting the rest of the taps to zero. For completeness

\[
\mathbf{J}_\Delta = \frac{1}{\mathcal{E}_x} \mathbb{E} \left[\begin{bmatrix}
 x_k - \Delta \\
 \vdots \\
 x_{k-N_f-\nu+1} \\
 x_k - \Delta - N_b
\end{bmatrix} \right] \left[\begin{bmatrix}
 x_k - \Delta \\
 \vdots \\
 x_{k-N_f-\nu+1} \\
 x_k - \Delta - N_b
\end{bmatrix} \right] \quad (5.52)
\]

\[
= \begin{bmatrix}
 \mathbf{0}_{(N_f+\nu-\Delta) \times \Delta} & \mathbf{I}_{(N_f+\nu-\Delta) \times (N_f+\nu-\Delta)} & \mathbf{0}_{(\Delta+N_b-N_f-\nu+1) \times (N_f+\nu-\Delta)} & \mathbf{0}_{(\Delta+N_b-N_f-\nu+1) \times (N_f+\nu-\Delta)}
\end{bmatrix}
\]

For \(\mathbf{b} = [1, -\tilde{b}_1, \ldots, -\tilde{b}_{N_f+\nu-\Delta}] \),

\[
\tilde{\mathbf{b}} \mathbf{J}_\Delta \tilde{\mathbf{b}}^* = \mathcal{E}_x^2 \mathbf{b} \mathbf{b}^*
\]

Note: The Case II is really an edge effect that we will not consider in detail, but we enunciated it more for completeness. We will focus our attention on Case I.

Now, expressing \(\mathbf{w} \) in term of \(\mathbf{b} \) we obtain, for Case I,

\[
\sigma^2(\Delta) = \mathbb{E} \left[\| \mathbf{bX}^{k-\Delta}_{k-\Delta-N_b} - \tilde{\mathbf{b}} \mathbf{J}_\Delta \mathbf{P}^-1 \mathbf{R}^{-1}_{YY} \mathbf{Y}_{k} \|^2 \right] = \mathbf{b} \{ \mathcal{E}_x \mathbf{I}_{(N_b+1)} - \mathcal{E}_x \mathbf{J}_\Delta \mathbf{P}^-1 \mathbf{R}^{-1}_{YY} \mathbf{P} \mathbf{J}_\Delta \mathcal{E}_x \} \mathbf{b}^* \]

(5.52)
where,

\[R_{YY} = [\mathcal{E}_x PP^* + LN_0 I_{N_f L}] \]

We now use this in (5.52),

\[\sigma_e^2(\Delta) = \mathcal{E}_x b \left\{ I_{N_b+1} - J_\Delta P^* \left[PP^* + \frac{LN_0}{\mathcal{E}_x} I_{N_f L} \right]^{-1} P \right\} J_\Delta b^* \]

(5.53)

Now, for case I using (5.51) we have,

\[J_\Delta J_\Delta^* = I_{N_b+1}. \]

Using this in (5.53) we get,

\[\sigma_e^2(\Delta) = \mathcal{E}_x b J_\Delta \left\{ I_{N_f+1} - P^* \left[PP^* + \frac{LN_0}{\mathcal{E}_x} I_{N_f L} \right]^{-1} P \right\} J_\Delta b^* \]

(5.54)

Now we use the matrix inversion lemma (Lemma 5.7.1) in (5.54) after identifying,

\[A = I_{N_f+1}, \quad B = P^* \quad C^{-1} = \frac{LN_0}{\mathcal{E}_x} I_{N_f L}. \]

Hence using this in (5.54) we get

\[\sigma_e^2(\Delta) = \mathcal{E}_x b J_\Delta \left\{ I_{N_f+1} - P^* \left[PP^* + \frac{LN_0}{\mathcal{E}_x} I_{N_f L} \right]^{-1} P \right\} J_\Delta b^* \]

(5.55)

\[= \mathcal{E}_x b J_\Delta \left\{ I_{N_f+1} - \frac{\mathcal{E}_x}{LN_0} P^* P \right\} J_\Delta b^* \]

\[= LN_0 b \left\{ J_\Delta \left\{ \frac{L}{SNR} I + P^* P \right\}^{-1} J_\Delta^* \right\} b^* \]

\[\overset{\Delta}{=} LN_0 b \tilde{Q}^{-1}(\Delta) b^* \]

(5.56)

Let us define the Choleski decomposition,

\[\tilde{Q}(\Delta) = G_\Delta S_\Delta^* G_\Delta \]

\[\tilde{Q}^{-1}(\Delta) = G_\Delta^* S_\Delta G_\Delta \]

where \(G_\Delta \) is an upper triangular matrix, and hence \(G_\Delta^* \) is a lower triangular matrix.

Fact 5.7.1. If \(G_\Delta \) is an upper triangular matrix, so is \(G_\Delta^{-1} \).

Hence, the same fact follows for lower triangular matrices. Therefore, \(G_\Delta^{-1} \) is upper triangular and \(G_\Delta^* \) is lower triangular. Now, suppose we have

\[S_\Delta = \begin{bmatrix} s_0(\Delta) & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & s_{N_b}(\Delta) \end{bmatrix} \]

(5.57)
as the diagonal matrix S_Δ, with the ordering property,
\[s_0(\Delta) \leq s_1(\Delta) \leq \ldots \leq s_{N_b}(\Delta) \]
This property is assured due to the Choleski factorization. Hence,
\[
\sigma^2_r(\Delta) = LN_0 b \left[G_\Delta^{-1} S_\Delta G_\Delta^{-1} \right] b \\
= LN_0 (bG_\Delta^{-1}) S_\Delta (bG_\Delta^{-1})^*
\]
(5.58)
To minimize this we want to pick off $s_0(\Delta)$, i.e., the top-left corner element of S_Δ, for which we want
\[bG_\Delta^{-1} = [1, 0, \ldots, 0] \]
This means that we want b to be the first row of G_Δ. This can be seen by noticing that,
\[G_\Delta G_\Delta^{-1} = I \]
If
\[G_\Delta = \begin{bmatrix} g_\Delta(0) \\ \vdots \\ g_\Delta(N_b) \end{bmatrix} \]
then clearly
\[g_\Delta(0)G_\Delta^{-1} = [1, 0, \ldots, 0] \]
If $g_\Delta(0)$ is the top row of upper triangular matrix G_Δ
\[b_{opt} = g_\Delta(0) \]
(5.59)
and
\[w_{opt} = b_{opt} R_{XY}(\Delta) R_{YY}^{-1} \]
\[\underbrace{g_\Delta(0) J_\Delta \left(P^* P + \frac{L}{SNR} I \right)^{-1}}_{\text{feed forward filter}} \underbrace{P^*}_{\text{matched filter}} \]
where (b) follows because,
\[
P^* PP^* + \frac{L}{SNR} = P^* PP^* + \frac{L}{SNR} P^* \\
P^* \left(PP^* + \frac{L}{SNR} I \right) = \left(P^* P + \frac{L}{SNR} I \right) P^* \\
\Rightarrow \left(P^* P + \frac{L}{SNR} I \right)^{-1} P^* = P^* \left(PP^* + \frac{L}{SNR} I \right)^{-1} \]
Hence, we basically have the same interpretation of the FIR MMSE-DFE as in the infinite length case as a matched filter cascaded with a feed forward filter.
Now, for the performance of the FIR MMSE-DFE, from (5.58) and (5.59), we see that
\[\sigma^2_r(\Delta) = LN_0 s_0(\Delta) \]
where $s_0(\Delta)$ is defined in (5.57). Hence, both the settings of the FIR MMSE-DFE and the analysis involves the Choleski decomposition of $Q(\Delta)$ defined in (5.56). This is similar to the analysis of the FIR MMSE-LE. However, the optimization with respect to the decision delay, Δ, needs to be carried out separately unlike the FIR MMSE-LE. Therefore for different values of Δ, the $\sigma^2_r(\Delta)$ is evaluated and the delay corresponding to the minimum is chosen.
Chapter 6

Transmission structures

In Chapter 4 and 5, we learnt detection for ISI channels. However, the transmission structure remained the same as an AWGN channel. This chapter examines techniques at the transmitter that are suitable for ISI channels. We study precoding in Section 6.1 which also mitigates error-propagation effects of the DFE. Section 6.2 demonstrates a canonical transmission and reception structure which is suitable for ISI channels. Finally, Section 6.3 is devoted to training sequence optimization for channel estimation.

6.1 Pre-coding

In order to counter error-propagation in DFE’s, one method is to do “precoding”. The first idea is to move the feedback section of the DFE to the transmitter. Note that this requires the knowledge of the channel at the transmitter. We will also study another transmit strategy in this chapter which uses alternate way of simplifying the equalization problem (multi carrier transmission).

6.1.1 Tomlinson-Harashima precoding

For simplicity we will first illustrate this with real (i.e., one-dimensional) baseband signals.

\[x_k \]
\[M\text{-ary input} \]
\[+ \]
\[\psi_k \]
\[\Gamma_M(\tilde{x}) \]
\[1 - B(D) \]
\[\tilde{x}_k \]

Figure 6.1: The Tomlinson-Harashima precoder for real baseband signals.

The basic idea is understood by examining the ZF-DFE. In the ZF-DFE as seen in Section 5.7.2, we have,

\[W(D) = \frac{1}{\gamma_0|p||P_c(D)^{-}} \text{, } B(D) = P_c(D) \]

(6.1)

where,

\[Q(D) = \gamma_0 P_c(D) P_{c_{\text{c}}}^{\text{c}}(D^{-}) \text{.} \]
and $B(D)$ is monic, i.e., $b_0 = 1$. Now, suppose we remove the $\Gamma_M(\cdot)$ block from Figure 6.1, then we get,

$$\psi_k = x_k - \sum_{l=1}^{\infty} b_l \psi_{k-l}$$

(6.2)

Therefore we get,

$$\sum_{l=0}^{\infty} b_l \psi_{k-l} = x_k.$$ (6.3)

Using this we get for $\Psi(D) = D(\{\psi_k\})$,

$$\Psi(D) = \frac{X(D)}{B(D)} \left(\frac{a}{P_c(D)}\right) = \frac{X(D)}{P_c(D)};$$

where (a) follows due to the fact that we are using the settings of the ZF-DFE given in (6.1). Now, suppose instead of x_k, we transmit $f_k g$. Then, after matched filtering,

$$Y(D) = ||p||Q(D)\psi(D) + Z(D).$$

Now, suppose we go through the feed-forward filter $W(D)$, then we get,

$$Y(D)W(D) = ||p||W(D)Q(D)\psi(D) + Z(D)W(D)$$

$$= \frac{||p||\gamma_0 P_c(D) P_c^*(D^{-*})}{\gamma_0 ||p||P_c^*(D^{-*})} X(D) + \frac{Z(D)}{\gamma_0 ||p||P_c^*(D^{-*})}$$

$$= X(D) + \tilde{Z}(D)$$

where the noise PSD is,

$$S_{\tilde{Z}}(D) = \frac{N_0 Q(D)}{\gamma_0 ||p||^2 P_c^*(D^{-*})} = \frac{N_0}{\gamma_0 ||p||^2}$$

Hence, we have removed ISI, and the noise is white. The basic problem with this first attempt is that the transmit power is boosted. To see this, if $S_x(D) = E_x$ is white, then,

$$S_{\Psi}(D) = \frac{E_x}{P_c(D) P_c^*(D^{-*})} = \frac{E_x \gamma_0}{Q(D)}$$

The transmit power is then

$$\frac{T}{2\pi} \int_{-\pi/T}^{\pi/T} S_{\Psi}(e^{-j\omega T}) d\omega$$

which could be larger than E_x. Moreover, $\Psi(D)$ is no longer a white process, i.e., there is memory in transmitted symbols. A simple trick eliminates the power problem almost completely.

Modulo operator: $\Gamma_M(x)$ is a non-linear function defined on a M-ary PAM input constellation with uniform spacing of d such that

$$\Gamma_M(x) = x - Md[y + \frac{Md - x}{Md}]$$

where $[y]$ means the largest integer that is less than or equal to y (lower ceil operation). The modulo operator is illustrated in Figure 6.2. Therefore the modulo operator $\Gamma_M(\cdot)$ maps all points $x \in \mathbb{R}$ back to the interval $[-\frac{Md}{2}, \frac{Md}{2}]$. This is done by first tiling the real line with intervals of size M. Then the intuitive explanation of the operator is as follows. We map any point $x \in \mathbb{R}$ by observing its relative
6.1. PRE-CODING

position in the corresponding interval and mapping it back to the corresponding position in the interval $[-\frac{M}{2}, \frac{M}{2}]$ as shown in Figure 6.2.

Properties of modulo operator:

\[
\Gamma_M(x + y) = \Gamma_M(x) \oplus_M \Gamma_M(y) \\
\Gamma_M(x - y) = \Gamma_M(x) \otimes_M \Gamma_M(y)
\]

where

\[
a \oplus_M b = \Gamma_M(a + b) \\
a \otimes_M b = \Gamma_M(a - b)
\]

We denote \oplus_M and \otimes_M operators to mean addition and subtraction modulo M. So, now, let us take our first idea and pass the output through a modulo operator in order to ensure the transmit power is controlled. From Figure 6.1, we see that,

\[
\Psi(D) = X(D) + (1 - B(D))\tilde{X}(D)
\]

where $B(D)$ is defined in (6.1). Therefore in time domain,

\[
\psi_k = x_k - \sum_{i=1}^{\infty} b_i \tilde{x}_{k-i}
\]

where from Figure 6.1 we see that,

\[
\tilde{x}_k = \Gamma_M(\psi_k) = \Gamma_M \left[x_k - \sum_{i=1}^{\infty} b_i \tilde{x}_{k-i} \right]
\]

Now, going back to our earlier calculation, with $W(D) = \frac{1}{\gamma_0||p||P_c^*(D^{-\tau})}$ and $B(D) = P_c(D)$, we get

\[
Y(D) = ||p||Q(D)\tilde{X}(D) + Z(D)
\]

Hence after the feed forward filter,

\[
R(D) = Y(D)W(D) = \frac{||p||Q(D)}{\gamma_0||p||P_c^*(D^{-\tau})} \tilde{X}(D) + \frac{Z(D)}{\gamma_0||p||P_c^*(D^{-\tau})} = P_c(D)\tilde{X}(D) + Z(D)
\]
Therefore, in time domain,

\[r_k = \bar{x}_k + \sum_{i=1}^{\infty} b_i \bar{x}_{k-i} + \bar{z}_k \]

where the noise \(\bar{z}_k \) is white.

Now, suppose we do a modulo operation at the output, i.e.,

\[r_k \rightarrow \Gamma_M(r_k) \]

\[\Gamma_M(r_k) = \Gamma_M \left[\bar{x}_k + \sum_{i=1}^{\infty} b_i \bar{x}_{k-i} + \bar{z}_k \right] \]

\[= \Gamma_M \left[\Gamma_M(\bar{x}_k) + \sum_{i=1}^{\infty} b_i \bar{x}_{k-i} + \bar{z}_k \right] \]

\[= \Gamma_M \left[\sum_{i=1}^{\infty} b_i \bar{x}_{k-i} + \bar{z}_k \right] \]

\[\equiv (a) \Gamma_M \left[\sum_{i=1}^{\infty} b_i \bar{x}_{k-i} + \sum_{i=1}^{\infty} b_i \bar{x}_{k-i} + \bar{z}_k \right] \]

\[= \Gamma_M \left[\sum_{i=1}^{\infty} b_i \bar{x}_{k-i} \right] = x_k \oplus_M \Gamma_M(\bar{z}_k) \]

Here \((a)\) follows because

\[\Gamma_M(\Gamma_M(a) + b) = \Gamma_M(\Gamma_M(a)) \oplus_M \Gamma_M(b) \]

\[= \Gamma_M(a) \oplus_M \Gamma_M(b) \]

\[= \Gamma_M(a + b) \]

The Tomlinson-Harashima precoder can be also adapted to the MMSE-DFE case, but we will not go into details here. Also, for complex symbols and multidimensional signals, the only change needed is in the definition of \(\Gamma_M(x) \), the modulo-operator. All the arguments in the above stated case go through in such case as well with an appropriately defined modulo operator. Next, we address the transmit power of the precoder.

The original PAM constellation had an average energy of

\[\mathcal{E}_x = \frac{M^2 - 1}{12}d^2 \]

For \(\bar{x}_k \) uniformly distributed in \([-Md/2, Md/2]\) the power is approximately \(\frac{M^2d^2}{12} \), which results in a power increase of \(\frac{M^2}{Md^2} \) in the transmission which implies a small increase in power that vanishes for large \(M \). Note that this is an approximate calculation and not a formal result for finite \(M \). A more complete calculation is beyond the scope of this class.

6.2 Multicarrier Transmission (OFDM)

Now, we have studied various methods of dealing with inter-symbol-interference. The main techniques were receiver driver, i.e., the transmission was as if we had an AWGN channel, but the receiver took the ISI into account. One exception was the Tomlinson-Harashima precoder, which did change the transmission scheme. However it required knowledge of the channel of the transmitter. Next we are going to study a transmission and reception scheme that utilizes a characteristic of the channel (being a LTI channel) rather than the specifics of the channel response.
6.2. Fourier eigenbasis of LTI channels

The basic idea is that the Fourier basis is the eigenbasis for LTI channels. In Figure 6.3, let $X(\omega) = \delta(\omega - \omega_0)$, then

$$X(\omega)P(\omega) = P(\omega)\delta(\omega - \omega_0) = P(\omega_0)\delta(\omega - \omega_0)$$

i.e.,

$$x(k) = e^{-j\omega_0 k} \Rightarrow x(k) * p(k) = P(\omega_0)e^{-j\omega_0 k}$$

(6.4)

Thus the output is just a scaled version of the input, in other words the Fourier basis is the eigenbasis for LTI channels. This property only utilizes the LTI nature of the channel and not any specific form of channel impulse response. This canonical orthogonal decomposition property is the central idea behind the transmission strategies discussed in this section.

6.2.2 Orthogonal Frequency Division Multiplexing (OFDM)

The idea in OFDM (Orthogonal Frequency Division Multiplexing) is to utilize this eigen-property of LTI channels. Let us use the modulation studied in Chapter 2, and therefore the cascade of the channel along with the basis function is defined as in Section 4.2. We use the same notation from there to denote the equivalent discrete time ISI channel as $\{p_n\}$. Therefore if we transmit (see Figure 6.4)

$$x_k = \sum_{n=0}^{N-1} X(n)e^{-j\omega_n k},$$

using the eigenproperty shown in (6.4), we see that the output y_k is

$$y_k = \sum_{n=0}^{N-1} X(n)P(\omega_n)e^{-j\omega_n k} + z_k$$

Now, we convolve the output using filters tuned to specific frequencies, $\omega_0, \ldots, \omega_{N-1}$.

Figure 6.3: Transmission over LTI channel.

Figure 6.4: Decomposition of LTI channels using sinusoids.
Then we could just pick out the different frequency components of y_k and observe the noisy versions of what was transmitted, i.e.,

$$Y(n) = P(\omega_n)X(n) + Z(n), \quad n = 0, \ldots, N - 1,$$

where $Y(n)$ is the received signal at frequency ω_n, and $Z(n)$ is the corresponding noise at ω_n.

Therefore we get a set of parallel channels, each of which is memoryless. Hence we have decomposed an ISI channel into a set of memoryless channels which are much easier to work with. However, in doing this we needed infinite length blocks. In reality we only have finite transmission blocks, and therefore a natural question to ask is whether this creates a roadblock to this approach. This is the topic we study next. Note that since we send information using multiple sinusoid “carriers” this idea is also called *multicarrier transmission*. Since we are using discrete spacing of the carriers the terminology commonly used is *Discrete Multi-Tone* or DMT for short.

Cyclic prefix

We now use an additional assumption on the channel response, i.e., that it is a finite impulse response. A similar assumption was used in Section 5.7 while considering finite length equalizers. In fact we use the same setup as shown in Figure 6.5 for an oversampled receiver.

Consider the model given in (5.47)

$$y_k = \begin{bmatrix} p_0 & p_1 & \cdots & p_\nu & 0 & 0 & \cdots & 0 \\
0 & p_0 & p_1 & \cdots & p_\nu & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \cdots & 0 \\
0 & \cdots & 0 & 0 & p_0 & p_1 & \cdots & p_\nu \end{bmatrix} x_k \begin{bmatrix} x_k \\ x_{k-1} \\ \vdots \\ x_{k-N+1} \end{bmatrix} + \begin{bmatrix} z_k \\ z_{k-1} \\ \vdots \\ z_{k-N+1} \end{bmatrix} \tag{6.5}$$

Here, the output

$$y_k = \begin{bmatrix} y_k(0) \\ \vdots \\ y_k(L-1) \end{bmatrix}$$

is the output of the “oversampler” and anti-aliasing filter, as shown in Figure 6.5. Also the pulse response is assumed finite, i.e., of length νT. Now the idea is that for a block of N (vector) received samples\(^1\), it is actually affected by $N + \nu$ input symbols, $\{x_k, \ldots, x_{k-N+1}\}$ (see Figure 6.6).

![Figure 6.5: Set-up for (6.5).](image)

Clearly the receiver symbols $\{y_k-N, \ldots, y_k-N-\nu+1\}$ depend on $\{x_k-N, \ldots, x_{k-N+1}\}$ which also affect the observation frame shown in (6.5). Therefore, in a way we are “discarding” those observations. Now, let us create a dependency between $\{x_k-N, \ldots, x_{k-N-\nu+1}\}$ and $\{x_k, \ldots, x_{k-N+1}\}$ (see Figure 6.7). Therefore we are only sending N information symbols in a block of $N + \nu$ symbols.

\(^1\)For simplicity of notation we will sometimes use $L = 1$, but the principle is identical in the more general (and correct) case.
Let us create a prefix \(\{ x_{k-N-\nu+1}, \ldots, x_{k-N+1} \} \)

\[
x_{k-N-\nu+1} = x_{k-i}, \quad i = 0, \ldots, \nu - 1
\]

This implies that the frame looks “cyclic” it makes the data circularly shifted.

Claim 6.2.1. Using the prefix (6.6) in (6.5), we get,

\[
\begin{bmatrix}
y_k \\
\vdots \\
y_{k-N+1}
\end{bmatrix}
= \begin{bmatrix}
p_0 & p_1 & \cdots & p_\nu & 0 & 0 & \cdots & 0 \\
0 & p_0 & p_1 & \cdots & p_\nu & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & \cdots & 0 & 0 & p_0 & p_1 & \cdots & p_\nu \\
p_\nu & 0 & \cdots & 0 & 0 & p_0 & \cdots & p_{\nu-1} \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
p_1 & p_2 & \cdots & p_\nu & 0 & \cdots & 0 & p_0 \\
\end{bmatrix}
\begin{bmatrix}
x_k \\
x_{k-1} \\
\vdots \\
x_{k-N+1}
\end{bmatrix}
+ \begin{bmatrix}
z_k \\
z_{k-1} \\
\vdots \\
z_{k-N+1}
\end{bmatrix}
\]

or we get

\[
\hat{Y}_k = \hat{P} \hat{X}_k + \hat{Z}_k
\]

Proof: First, let us rewrite (6.5) without the noise term as,

\[
\begin{bmatrix}
y_k \\
\vdots \\
y_{k-N+1}
\end{bmatrix}
= \begin{bmatrix}
p_0 & p_1 & \cdots & p_\nu & 0 & 0 & \cdots & 0 \\
0 & p_0 & p_1 & \cdots & p_\nu & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & \cdots & 0 & 0 & p_0 & p_1 & \cdots & p_\nu \\
\end{bmatrix}
\begin{bmatrix}
x_k \\
x_{k-1} \\
\vdots \\
x_{k-N+1}
\end{bmatrix}
\]

Now, let us use the prefix defined in (6.6) which is,

\[
x_{k-N-\nu} = x_{k-l}, \quad l = 0, \ldots, \nu - 1
\]
A circulant matrix has an eigen-decomposition where

\[Y_{k+\nu-N+1} = p_0 x_{k+\nu-N+1} + \cdots + p_\nu x_{k-N+1} \]

\[Y_{k+\nu-N} = p_0 x_{k-\nu - N} + \cdots + p_{\nu-1} x_{k-N+1} + p_\nu x_{k-N} \]

\[\vdots \]

\[Y_{k-N+1} = p_0 x_{k-N+1} + p_1 x_{k-N} + \cdots + p_{\nu-1} x_{k-N+\nu+1} + p_\nu x_{k-N+\nu+1} \]

Therefore after re-inserting the noise we get (6.7) as claimed.

\[y_k = \begin{bmatrix} \vdots \\ p_0 & p_1 & \cdots & p_\nu & 0 & 0 & \cdots & 0 \\ \vdots & \ddots \\ 0 & \cdots & 0 & p_0 & p_1 & \cdots & p_\nu \\ \vdots & \ddots \\ p_0 & \cdots & 0 & 0 & p_0 & \cdots & p_{\nu-1} \end{bmatrix} \begin{bmatrix} x_k \\ x_{k-1} \\ \vdots \\ x_{k+\nu-N+1} \\ \vdots \\ x_{k-N+1} \end{bmatrix} \]

(6.10)

Therefore after re-inserting the noise we get (6.7) as claimed.

Now, let us look at \(L = 1 \), i.e., each of the channel taps \(p_i \) is a scalar rather than a vector.

Theorem 6.2.1 (Decomposition of circulant matrices). A \((N \times N)\) matrix is circulant if it has the following structure.

\[C = \begin{bmatrix} p_0 & p_1 & \cdots & p_\nu & 0 & 0 & \cdots & 0 \\ 0 & p_0 & p_1 & \cdots & p_\nu & 0 & \cdots & 0 \\ \vdots & \ddots \\ 0 & \cdots & 0 & p_0 & p_1 & \cdots & p_\nu \\ p_0 & 0 & \cdots & 0 & p_0 & \cdots & p_{\nu-1} \\ \vdots & \ddots \\ p_0 & p_2 & \cdots & p_\nu & 0 & \cdots & p_0 \end{bmatrix} \]

A circulant matrix has an eigen-decomposition

\[C = F^* \Lambda F \]

where

\[(F)_{p,q} = \frac{1}{\sqrt{N}} \exp \left\{ -j\frac{2\pi}{N}(p-1)(q-1) \right\} \]

and \(\Lambda = \text{diag}(d_1) \) where \(d_1 \) is

\[d_1 = \sum_{m=0}^{\nu} p_m e^{-j\frac{2\pi}{N}ml} \]

That is,

\[\Lambda = \begin{bmatrix} d_0 & 0 & \cdots & 0 \\ \vdots \\ 0 & d_{N-1} \end{bmatrix} \]
Note: The matrix F as one would recognize is the DFT matrix and A contains on its diagonal the Fourier transform of the channel taps.

Now, let us use Theorem 6.2.1 in the basic OFDM equation (6.8) which is,
\[\hat{Y}_k = \hat{P}\hat{X}_k + \hat{Z}_k \]

Now, let us define
\[X_k = F\hat{X}_k \]
\[Y_k = F\hat{Y}_k \]
\[Z_k = F\hat{Z}_k \]

Then using Theorem 6.2.1 we have,
\[Y_k = \Lambda X_k + Z_k \]

since the DFT matrix is unitary \(i.e., \)
\[F^*F = I \]

Hence
\[Y_k(l) = d_lX_k(l) + Z_k(l), \quad l = 0, \ldots, N - 1 \] (6.11)

Therefore we have created ISI-free channel! Basically to do this, we have used the eigen property of LTI channels as well as the finite impulse response property of the channel. Note that for arbitrary L, (6.11) just becomes a vector relationship in the following way.
\[Y_k(l) = D_lX_k(l) + Z_k(l), \quad l = 0, \ldots, N - 1 \]

Here
\[D_l = \begin{bmatrix} \sum_{m=0}^{\nu} p_0(m)e^{-j\frac{2\pi}{N}ml} \\ \vdots \\ \sum_{m=0}^{\nu} p_{L-1}(m)e^{-j\frac{2\pi}{N}ml} \end{bmatrix} = \sum_{m=0}^{\nu} p(m)e^{-j\frac{2\pi}{N}ml}. \]

6.2.3 Frequency Domain Equalizer (FEQ)

Now, the relationship given in (6.11) for $L = 1$, forms the basis of the receiver in a manner similar to (5.45) for finite length equalizers. Given that we have no interference between the symbols \(\{X_n(l)\} \) the MMSE receiver is quite simple. Since we have transmitted symbols in additive (white) noise, the MMSE estimator is just.
\[\hat{X}_l(k) = \frac{d_l}{|d_l|^2 + \sigma^2/\hat{E}_x} Y_k(l) \]

where \hat{E}_x is the energy on every symbol. Since we are doing N successive transmissions, and F is a unitary transform, typically $\hat{E}_x = E_x$, the energy of originally intended symbol. The above FEQ is equivalent to the MMSE-LE applied in the frequency domain.

6.2.4 Alternate derivation of OFDM

Consider a periodic sequence \(\{x_n\} \) of period N, given by
\[x_{k-rN} = x_k, \quad r \in \mathbb{Z}, \quad k \in \{0, \ldots, N - 1\} \]
Therefore the Fourier transform of \(\{x_k\} \) is (basically Fourier series coefficients) is given by

\[
X(\omega) = \sum_{n=0}^{N-1} X_n \delta(\omega - \frac{2\pi}{N} n)
\]

Now, let us pass this periodic sequence through a LTI channel as shown in Figure 6.8. The output \(Y(\omega) \) is,

\[
Y(\omega) = P(\omega)X(\omega) = P(\omega) \sum_{n=0}^{N-1} X_n \delta(\omega - \frac{2\pi}{N} n) = \sum_{n=0}^{N-1} X_n P(\frac{2\pi}{N} n) \delta(\omega - \frac{2\pi}{N} n)
\]
\begin{equation}
(6.12)
\end{equation}

From equations (6.12) and (6.13), we obtain,

\[
Y_n = P \left(\frac{2\pi n}{N} \right) X_n, \quad n = 0, \ldots, N - 1.
\]
\begin{equation}
(6.14)
\end{equation}

Therefore, \(\{y_k\} \) is also periodic with period \(N \), i.e.,

\[
y_{k+rN} = y_k, \quad r \in \mathbb{Z}, k \in \{0, \ldots, N - 1\}
\]

Hence, just \(N \) samples of \(\{y_k\}_{k=0}^{N-1} \) are enough to reconstruct the sequence.

The basic trick in DMT/OFDM is to “simulate” an infinite periodic sequence without actually having to do so. This critically uses the FIR property of the channel. Since in the periodic sequence \(\{y_k\} \), the \(N \) samples are enough to recreate the periodic sequence, can we create a non-periodic transmission strategy that produces the same output? Therefore if we create an input that produces \(N \) samples of \(y_k \) which is the same as if the input were periodic, then we are done.

Now, if \(P(\omega) \) corresponds to FIR channel of memory \(\nu \), i.e., has impulse response \(p_0, \ldots, p_\nu \), then the noiseless output is

\[
y_k = \sum_{n=0}^{\nu} p_n x_{k-n}.
\]

For \(y_0, \ldots, y_{N-1} \) to look the same as the first \(N \) samples of the periodic sequence, we just need to prefix the sequence \(\{x_k\} \) i.e., see Figure 6.9.
Therefore, the output y_0, \ldots, y_{N-1} is identical to that we would have obtained from a periodic sequence. Hence, we have “tricked” the FIR channel into thinking that we did send a periodic sequence and get the “straight-wire” channel of equation (6.14). This idea has been illustrated for just a transmission block from time $k = 0, \ldots, N - 1$. However, in Section 6.2.2 we had transmission block which ended at an arbitrary time index k and hence the time indices look different. However, if we shifted our blocks to end at k instead of $N - 1$, then we would get exactly the same result as given in (6.11). Therefore the relationship in (6.14) is the noiseless version of the relationship in (6.11). Therefore we have derived the OFDM by an alternate methodology which also gives us the interpretation for why it works.

Notes:

1. We of course cannot have a time-limited and band-limited channels. This is an approximation, and this truncation would in principle cause aliasing. However, the choice of ν can make this error as small as we need.

2. By the trick shown, we essentially “sample” the channel in the frequency domain, i.e., $\left\{ P \left(\frac{2\pi n}{N} \right) \right\}_{n=0}^{N-1}$. This is correct for periodic sequences, but with a-periodic sequences, such a sampling could incur a loss, which is the same as the “aliasing” error in 1) above.

3. The decomposition of the channel into parallel channels through the cyclic prefix trick did not need the transmitter to know the channel impulse response. All that was used was

 - The channel was LTI
 - It had a finite response of length $\nu + 1$

 This property makes the decomposition canonical for FIR LTI channels.

The interpretation through periodic sequences leads us to the use of circular convolution. For a given N, the circular convolution between two sequences u_0, \ldots, u_{N-1} and v_0, \ldots, v_{N-1} is defined as

$$u_k \otimes_N v_k = \sum_{n=0}^{N-1} u_n v_{(k-n)N}, \quad k = 0, \ldots, N - 1$$ \hspace{1cm} (6.16)
where \((k - n)_N\) is the modulo operator \(i.e., (k - n)_N = r\) if \(k - n = qN + r\), for some \(q \in \mathbb{Z}\).

Therefore in our case if \((k - n) < 0\) then

\[(k - n)_N = N - (k - n),\]

Hence we can interpret the relationship in (6.15) by a circular convolution, \(i.e.,\)

\[y_k = p_k \otimes_N x_k.\]

This is also true in the relationship in (6.10) where

\[y_k = p_k \otimes_N x_k\]

Thus the operations in DMT/OFDM can also be interpreted in terms of circular convolutions. This interpretation is explicit in our derivation using periodic sequences. Note that circular convolution like periodic convolution is a commutative operation.

6.2.5 Successive Block Transmission

Note that the development till now has been on a single block of transmission. What happens for continuous transmissions? This is illustrated in Figure 6.12. For continuous transmission, the idea goes through again in the following manner.

Figure 6.10: Transmitted sequence for OFDM blocks.

Figure 6.11: Received sequence for OFDM blocks.

Figure 6.12: Continuous transmission blocks.

We define the following quantities (see Figures 6.10 and 6.11) in relation to the single frame transmission notation given in (6.7). We denote the frame of \(N + \nu\) symbols transmitted in block \(k\) as...
\{x_k(-\nu),...,x_k(-1),x_k(0),...,x_k(N-1)\} which along with the cyclic prefix relationship in (6.6) we see that the transmitted frame is \{x_k(N-\nu),...,x_k(N-1),x_k(0),...,x_k(N-1)\}.

The received frame of \(N+\nu\) symbols for block \(k\) is denoted by, \(\{y_k(-\nu),...,y_k(-1),y_k(0),...,y_k(N-1)\}\).

Now for each block of transmission, it is clear that \(\{y_k(-\nu),...,y_k(-1)\}\) are influenced by symbols transmitted in the previous frame (i.e., \(x_{k-1}(l), l = 0, ..., N-1\)). Therefore, we discard \(y_k(-\nu),...,y_k(-1)\) and only use \(y_k(0),...,y_k(N-1)\). Hence,

\[y_{k+1}(0) = p_0x_{k+1}(0) + p_1x_{k+1}(N-1) + ... + p_\nu x_{k+1}(N-\nu) \]

where due to the cyclic prefix the interference from the previous transmitted block (block \(k\)) has been eliminated. Therefore the prefix has eliminated the interblock interference at the cost of added redundancy of \(\nu\) symbols per block. Hence the redundancy rate is \(\frac{\nu}{N+\nu}\) per transmitted symbol.

Note that if we examined \(y_{k+1}(-1)\), we would have dependencies from the previous transmitted block (block \(k\)) and this is the reason for discarding it. Therefore the prefix given in (6.6) serves another purpose, i.e., it prevents successive blocks from interfering with each other. This function causes it to be also called the “guard” interval.

The overall block diagram implementation of DMT is shown in Figure 6.13.

Disadvantages of OFDM

The OFDM technique seems like a panacea and solves our ISI channel problem. However, it does have some disadvantage like longer transmit symbols, larger peak-to-average ratio, sensitivity to mismatch and synchronization errors. So, in practice, it depends on the real gain in system performance to make the appropriate choice between time-domain equalization and OFDM. Sometimes a combination of the two might be appropriate.
6.3 Channel Estimation

Up to now, the main assumption is that the transmission channel is known at the receiver. All the algorithms and techniques we have seen critically utilize this fact. A natural question is how we have such knowledge. The basic idea in channel estimation is to send known information symbols and estimate the channel. The technique is a dual of estimating information symbols while sending it through a known channel. Let us re-examine the discrete-time model given in (5.46) and for simplicity consider $L = 1$. Therefore, we can re-write it as

\[y_k = \sum_{m=0}^{\nu} p_m x_{k-m} + z_k, \]

and in vector form it is,

\[\begin{bmatrix} y_k \\ \vdots \\ y_{k-N_T+1} \end{bmatrix} = \begin{bmatrix} x_k & x_{k-1} & \cdots & x_{k-\nu} \\ x_{k-1} & x_{k-2} & \cdots & x_{k-\nu-1} \\ \vdots & \vdots & \ddots & \vdots \\ x_{k-N_T+1} & x_{k-N_T} & \cdots & x_{k-N_T+1-\nu} \end{bmatrix} \begin{bmatrix} p_0 \\ p_1 \\ \vdots \\ p_\nu \end{bmatrix} + \begin{bmatrix} z_k \\ \vdots \\ z_{k-N_T+1} \end{bmatrix} \]

(6.17)

where N_T = length of training. The problem is now of estimating p from Y when \{\(x_k, \ldots, x_{k-N_T+1-\nu}\)\} are known symbols. Thus in compact form, (6.17) is written as

\[Y = Xp + z \]

(6.18)

A criterion to estimate p from Y is

\[\hat{p}_{\text{opt}} = \arg \min_p ||Y - Xp||^2 \]

(6.19)

This can be written in more detail as,

\[\arg\min_p \sum_{t=0}^{N_T-1} \left| y_{k-t} - \sum_{m=0}^{\nu} p_m x_{k-t-m} \right|^2 = \hat{p}_{\text{opt}} \]

Note that this criterion does not involve any expectation ($E[.]$) operation. This is because we are assuming the channel to be an unknown constant and not a stochastic quantity. The criterion given in (6.19) is called the deterministic least squares criterion. As we shall see below, several of the geometric interpretations we had for the MMSE criterion (stochastic least squares) in Section 5.1 also carries through here as well. We will examine a relationship between deterministic and stochastic least squares in Section 6.3.2. We now know derive the orthogonality principle appropriate for the deterministic least squares problem (see also Figure 6.14). Let us write the cost function appropriate for the deterministic least squares problem as,

\[J(p) = ||Y - Xp||^2 \]

\[= Y^*Y + p^*X^*Xp - Y^*Xp - p^*X^*Y \]

By differentiation one gets

\[X^*X\hat{p}_{\text{opt}} = X^*Y \]

(6.20)

which in the terminology of least squares is the normal equation. If X^*X is invertible then

\[\hat{p}_{\text{opt}} = (X^*X)^{-1}X^*Y \]

(6.21)
Note that the normal equation (6.20) implies the orthogonality principle, i.e.,

\[e_{\text{opt}} = Y - X \hat{p}_{\text{opt}} \]

\[= Y - X (X^* X)^{-1} X^* Y \]

\[\Rightarrow X^* e_{\text{opt}} = X^* Y - (X^* X) (X X^*)^{-1} X^* Y \]

\[= 0 \]

(6.22)

Figure 6.14: Geometry of the deterministic least squares problem.

Hence \(e_{\text{opt}} \perp X \), is the orthogonality principle in this context (see also Figure 6.14).
Now, let us use this result in the model of interest, i.e., (6.18). Therefore, we get

\[\hat{p}_{\text{opt}} = (X^* X)^{-1} X^* [X p + z] = p + (X^* X)^{-1} X^* z \]

(6.23)

The estimation error for criterion (6.19) is therefore

\[e_{\text{opt}} = Y - X (X^* X)^{-1} X^* Y = \left[I - X (X^* X)^{-1} X^* \right] Y \]

Now, we can find the least squares error norm as

\[\| e_{\text{opt}} \|^2 = \| Y - X \hat{p}_{\text{opt}} \|^2 = Y^* e_{\text{opt}} - \hat{p}_{\text{opt}} X^* e_{\text{opt}} \]

\[(a)\quad Y^* e_{\text{opt}} = Y^* Y - Y^* X \hat{p}_{\text{opt}} \]

\[= Y^* Y - (X^* Y)^* \hat{p}_{\text{opt}} \]

\[(b)\quad Y^* Y - (X^* X \hat{p}_{\text{opt}})^* \hat{p}_{\text{opt}} \]

\[= Y^* Y - \| X \hat{p}_{\text{opt}} \|^2 \]

where (a) follows due to orthogonality (6.22) and (b) follows due to the normal equation (6.20). Therefore we get

\[\| e_{\text{opt}} \|^2 = Y^* Y - \hat{p}_{\text{opt}}^* (X^* X) \hat{p}_{\text{opt}} \]

(6.24)

which is a Pythagorean relationship (see Figure 6.14) similar to Theorem 5.1.3 in Section 5.1.4.

6.3.1 Training sequence design

We have further control on the channel estimation problem by appropriately choosing the known ("training") symbols that are sent. In this section we explore some properties we desire for designing training sequences.

Now, using (6.23), the error in the estimate \(\hat{p}_{\text{opt}} \) is,
\[\hat{p}_{opt} - p = (X^*X)^{-1}X^*[Xp + z] - p \]
\[= (X^*X)^{-1}X^*z \]
\[\text{Hence,} \]
\[\mathbb{E}_z[||\hat{p}_{opt} - p||^2] = N_0\text{trace}(X^*X)^{-1}, \]
where we have taken the \(\mathbb{E}[] \) operation over the noise \(z \), and used \(\mathbb{E}[zz^*] = N_0I \). Therefore, the “quality” of the estimate is determined by \(\text{trace}[(X^*X)^{-1}] \). The “optimal” training design is to choose the training symbols so as to minimize \(\text{trace}[(X^*X)^{-1}] \) for a given power constraint.

Problem:

Minimize \(\text{trace}[(X^*X)^{-1}] \)
subject to \(\frac{1}{N_T + \nu} \sum_{i=0}^{N_T + \nu - 1} |x_{k-i}|^2 \leq \mathcal{E}_x \)
or \(\text{trace}[X^*X] \leq c \)

Facts:

1. **Unitary decomposition:** If \(A = A^* \), then \(A = UAU^* \) where \(U^*U = I \).
2. If \(A = UAU^* \) and \(UU^* = I \) then, \(A^{-1} = UA^{-1}U^* \).

Theorem 6.3.1. Consider the problem with constraint given in (6.27), i.e.,

Minimize \(\text{trace}[(X^*X)^{-1}] \)
subject to \(\text{trace}[X^*X] \leq c \)

Then optimal training sequence for this problem satisfies \(X^*X = \frac{1}{\nu+c}I \).

Proof: Let \(X^*X = UAU^* \)

\[\text{trace}(X^*X)^{-1} = \text{trace}(UA^{-1}U^*) = \text{trace}(A^{-1}U^*U) \]
\[= \text{trace}(A^{-1}) = \sum_{i=0}^{\nu} \frac{1}{\lambda_i} \]

Similarly

\[\text{trace}(X^*X) = \sum_{i=0}^{\nu} \lambda_i \]

The problem with the constraint in (6.27) is then,

Minimize \(\sum_{i=0}^{\nu} \frac{1}{\lambda_i} \)
s.t \(\sum_{i=0}^{\nu} \lambda_i \leq c \)

Let us write the Lagrangian form for constrained optimization,

\[J(\lambda) = \sum_{i=0}^{\nu} \frac{1}{\lambda_i} - \gamma \sum_{i=0}^{\nu} \lambda_i \]
\[\frac{\partial J}{\partial \lambda_i} = -\frac{1}{\lambda_i^2} - \gamma = 0 \]
Therefore we see that \(\lambda_i^2 = -\frac{1}{\gamma} \) is a constant independent of index \(i \). Therefore

\[
\Lambda = -\frac{1}{\sqrt{\gamma}} I,
\]

giving us

\[
\mathcal{X}^* \mathcal{X} = -\frac{1}{\sqrt{\gamma}} I.
\]

Using this in (6.27) with equality we get

\[
\mathcal{X}^* \mathcal{X} = \frac{c}{\nu + 1} I
\]

This was a toy problem in that we did not take the exact constraints into account (there are edge effects that mean that problem (6.26) and (6.27) are not equivalent). Also, typically we want \(\{x_k\} \) to come from a particular constellation. That makes the training sequence optimization problem a discrete one, i.e., a discrete optimization problem. However, this gives one an idea of what kind of training sequences we should attempt to design. Another way of interpreting this is that we want the training sequences to have low cross-correlation with shifted versions. This requirement on sequences also arises in CDMA wireless multiple access communications.

Now, let us compare the true constraint given in (6.26)

\[
\frac{1}{N_T + \nu} \sum_{l=0}^{N_T + \nu - 1} |x_{k-l}|^2 \leq \mathcal{E}_x
\]

and the formal constraint (6.27) that we solved, i.e.,

\[
tr[\mathcal{X}^* \mathcal{X}] \leq c.
\]

In order to do this we can write,

\[
\mathcal{X}^* \mathcal{X} = \begin{bmatrix}
 x_k & \cdots & x_k-\nu \\
 \vdots & \ddots & \vdots \\
 x_{k-N_T+1} & \cdots & x_{k-\nu-N_T+1}
\end{bmatrix}^* \begin{bmatrix}
 x_k & \cdots & x_k-\nu \\
 \vdots & \ddots & \vdots \\
 x_{k-N_T+1} & \cdots & x_{k-\nu-N_T+1}
\end{bmatrix}
\]

Hence we get,

\[
trace(\mathcal{X}^* \mathcal{X}) = \sum_{l=0}^{\nu} \sum_{l=0}^{N_T-1} |x_{k-l}|^2
\]

\[
= (\nu + 1) \left[\sum_{l=0}^{N_T-1} |x_{k-l}|^2 \right] + |x_k|^2 + 2|x_{k-1}|^2 + \ldots + \nu|x_{k-\nu+1}|^2 + \nu|x_{k-N_T}|^2
\]

\[
+ \ldots + 2|x_{k-\nu-N_T+1}|^2 + |x_{k-\nu-N_T+2}|^2
\]

Therefore we get,

\[
trace(\mathcal{X}^* \mathcal{X}) = (\nu + 1) \left[\sum_{l=0}^{N_T + \nu - 1} |x_{k-l}|^2 \right] - \{\nu|x_k|^2 + \ldots + |x_{k-\nu+1}|^2\} - \{\nu|x_{k-N_T}|^2 + \ldots + \nu|x_{k-N_T-\nu+1}|^2\}
\]

\[
\leq (\nu + 1)(N_T + \nu) \mathcal{E}_x - \{\nu|x_k|^2 + \ldots + |x_{k-\nu+1}|^2\} - \{\nu|x_{k-N_T}|^2 + \ldots + \nu|x_{k-N_T-\nu+1}|^2\}
\]

\[
\approx (\nu + 1)(N_T + \nu) \mathcal{E}_x
\]
Therefore \(c \approx (\nu + 1)(N_T + \nu)\mathcal{E}_x \) if we ignore the edge effects.
Now if we use the “optimal” training sequence as specified in Theorem 6.3.1, we get

\[
(\mathcal{X}^* \mathcal{X}) = \frac{c}{\nu + 1} I = (N_T + \nu)\mathcal{E}_x I
\]

and applying this using (6.25) we have

\[
\mathbb{E}(\mathbf{p} - \mathbf{p}_{opt})(\mathbf{p} - \mathbf{p}_{opt})^* = (\mathcal{X}^* \mathcal{X})^{-1} N_0.
\]

These together give us,

\[
\mathbb{E}(\mathbf{p} - \mathbf{p}_{opt})(\mathbf{p} - \mathbf{p}_{opt})^* = \frac{N_0}{(N_T + \nu)\mathcal{E}_x} I
\]

Therefore, for the optimal training sequences,

\[
\mathbb{E}[\|\mathbf{p} - \mathbf{p}_{opt}\|^2] = \frac{N_0\nu}{(N_T + \nu)\mathcal{E}_x} = \frac{1}{1 + \frac{\nu}{N_T}}.
\]

Given this, the error in the estimate is made small by choosing \(N_T \gg \nu \), i.e., the training length should be much larger than the number of parameters being estimated. If such a large \(N_T \) is chosen, then the assumption of “perfect” channel state information becomes quite reasonable.

Channel mismatch

Since the channel estimation error is non-zero, the use of channel estimate instead of true channel incurs a penalty. Therefore we think that the output behaves as,

\[
\mathbf{y}_k = \sum_{m=0}^{\nu} \mathbf{\hat{p}}_{opt,m}x_{k-m} + \sum_{m=0}^{\nu} (\mathbf{p}_m - \mathbf{\hat{p}}_{opt,m})x_{k-m} + \mathbf{z}_k
\]

If \(\{x_k\} \) are assumed i.i.d then

\[
\mathbb{E} \left[||\mathbf{z}_k||^2 \right] = \mathcal{E}_z \mathbb{E} \left[||\mathbf{\hat{p}}_{opt} - \mathbf{p}||^2 \right] + N_0 L
\]

Hence, if the estimation error is small, then the use of the estimated channel does not greatly affect performance. However, if either the training sequence length \(N_T \), is small or the sequence was chosen poorly, the mismatch in the channel could adversely affect performance. For good system design, one tries to ensure that the channel mismatch is small. If \(N_T \) becomes large, it is clear that the mismatch asymptotically vanishes. In wireless channels (which we will encounter soon), there may be constraints on \(N_T \) causing non-negligible channel mismatch.

6.3.2 Relationship between stochastic and deterministic least squares

In this section we explore the relationship between deterministic and stochastic least squares. We do this using the model given in (6.18)

\[
\mathbf{y} = \mathcal{X}\mathbf{p} + \mathbf{z}
\]

and make the assumption that \(\mathbf{p} \) is a stochastic variable with

\[
\mathbb{E} \mathbf{p} \mathbf{p}^* = \alpha I,
\]
As before we assume that \(E z z^* = N_0 I \).

Now we use a linear estimator
\[
\hat{p}_s = M Y
\] (6.31)
and we use the criterion
\[
\hat{p}_s = \arg \min_{\hat{p}} E [\| p - \hat{p} \|^2]
\] (6.32)

Using orthogonality principle (seen in Section 5.1) we have
\[p - \hat{p}_s \perp Y \]

Hence we have,
\[
E [(p - M Y)^* Y^*] = 0
\]
giving us
\[
M = E(p Y^*) (E [Y Y^*])^{-1}
\]

Now we can write this explicitly using our assumptions as,
\[
E(p Y^*) = (\alpha I) X^*,
E(Y Y^*) = (\alpha X X^* + N_0 I)
\]

Hence we see that the linear estimator using the stochastic criterion (6.32) is given by
\[
M = \alpha X^* [\alpha X X^* + N_0 I_{N_T}]^{-1}
\] (6.33)

Claim 6.3.1.
\[
M = \left[\frac{N_0}{\alpha} I_{L + 1} + X^* X \right]^{-1} X^*
\]

Proof: Now using (6.33),
\[
M = X^* \left[X X^* + \frac{N_0}{\alpha} I_{N_T} \right]^{-1}
\]

Note that
\[
X^* \left[X X^* + \frac{N_0}{\alpha} I_{N_T} \right] = \left[X^* X X^* + \frac{N_0}{\alpha} X^* \right] = \left[X^* X + \frac{N_0}{\alpha} I_{L + 1} \right] X^*
\]
\[
\Rightarrow \left[X X^* + \frac{N_0}{\alpha} I_{L + 1} \right]^{-1} X^* = X^* \left[X X^* + \frac{N_0}{\alpha} I_{N_T} \right]^{-1} = M
\]
Hence we can rewrite (6.31) as
\[\hat{p}_s = \left[X^* X + \frac{N_0}{\alpha} I_{\nu+1} \right]^{-1} X^* Y. \]
Comparing this to the solution obtained from the deterministic least squares (6.21), we see that if \(\alpha \to \infty \), both are the same! Letting \(\alpha \to \infty \) is like saying we are estimating an unknown constant and this is basically what deterministic least squares is trying to do.

Now, let us examine the MMSE of the stochastic estimator, which is given by
\[
\mathbb{E}(p - \hat{p}_s)(p - \hat{p}_s)^* = \alpha I_{\nu+1} - \alpha X^* (\alpha X X^* + N_0 I_{N_T})^{-1} \alpha X
\]
where \(\mathbb{E} pp^* = \alpha I \) as before. Using matrix inversion lemma\(^2\) (Lemma 5.7.1) we get,
\[
\mathbb{E}(p - \hat{p}_s)(p - \hat{p}_s)^* = \left[\frac{1}{\alpha} I_{\nu+1} + \frac{1}{N_0} X^* X \right]^{-1}
\]
If we make an assumption on \(\{x_k\} \) satisfies the training optimality condition of Theorem 6.3.1 (see also (6.30)),
\[X^* X = (N_T + \nu) \mathcal{E}_x I_{\nu+1} \]
then
\[
\mathbb{E}(p - \hat{p}_s)(p - \hat{p}_s)^* = \left[\frac{1}{\alpha} I_{\nu+1} + \frac{1}{N_0} (N_T + \nu) \mathcal{E}_x I_{\nu+1} \right]^{-1}
\]
\[
= \frac{1}{\alpha + \frac{(N_T + \nu) \mathcal{E}_x}{N_0}} I_{\nu+1}
\]
If
\[(N_T + \nu) \frac{\mathcal{E}_x}{N_0} \gg \frac{1}{\alpha}, \]
then
\[\mathbb{E}(p - \hat{p}_s)(p - \hat{p}_s)^* \approx \frac{N_0}{\mathcal{E}_x} \frac{1}{N_T + \nu} I_{\nu+1} < < \alpha I_{\nu+1} \]
Therefore the error covariance is much smaller than the variance of the random channel, i.e., much smaller than the initial uncertainty.

\(^2\)where the matrix inversion lemma is \([A + BCB^*]^{-1} = A^{-1} - A^{-1}B[C^{-1} + B^*A^{-1}B]^{-1}B^*A^{-1}\).
Part III

Wireless Communications
Chapter 7

Wireless channel models

Wireless communication refers to communication using electromagnetic waves propagated in “air” to carry information. This is different from the telephone line channel or the cable channel that required a wire to carry information across from point to point. Today wireless networks have significantly penetrated our lives through cellular phones, satellite TV and even cordless phones which combine with the traditional PSTN wired telephone line network.

Wireless communication has a long history, dating back to 1897 when Marconi successfully demonstrated wireless telegraphy. The early 20th century witnessed the birth of radio transmission with speech and audio carried across the ocean. Soon, television transmission started in the 1930s and the launching of satellites in the 1950s started long-haul wireless networks. Today microwave networks for line-of-sight transmission, cellular networks for wireless telephony and wireless LANs for data access seem ubiquitous. In this part of the class we introduce the transmission medium in cellular wireless communication and some of the signal processing issues dealing with reception of multiple user wireless transmissions.

There are two main distinguishing features of wireless communications in comparison to wired channels. The first is the channel could be time-varying causing the received signal strength to wax and wane. This phenomenon is called channel fading, and occurs due to radio wave propagation effects. The second is that the wireless channel is an inherently shared medium and hence multiple user interact and interfere with each other. Therefore we need to devise techniques to handle multiuser interference making it distinct from the point-to-point (single-user) detectors we studied in Chapter 2. In general we also encounter inter-symbol interference in wireless channels, but this is something we have already encountered in Chapter 4-6.

A cellular network consists of users spread over a geographical area served by a “base station”. The area of a single base station is often called a “cell” and hence the name cellular communication. Several base-stations combine to cover large geographical areas. For example New York city has base-stations every couple of blocks and therefore the cells could be quite small. On the other hand in sub-urban and rural areas the cells could be quite large, of the order several square kilometers.

The base-stations connect to the wired telephone network enabling calls to and from the telephone line network to the wireless cellular network. Given this background, we study the following aspects of wireless networks.

- Radio wave propagation in scattering environments.
- Physical and statistical models for wireless channels.
- Detection in wireless point-to-point (single users) channels.
- Concept of diversity in various forms.
Figure 7.1: A cartoon of a cellular base station.

Figure 7.2: An oversimplified view of cells in geographical area.
7.1. RADIO WAVE PROPAGATION

- Wireless multi-users channels, in particular focus on the multiple access channel.
- Multiuser detection for multiple access channels.

In this chapter we study wireless channel models after understanding the effects of radio wave propagation. In Chapter 8, we study detection in point-to-point (single user) wireless channels. In Chapter 9, we study multiuser wireless channels and focus on multiple access channels.

7.1 Radio wave propagation

Wireless transmission occurs by modulating electromagnetic waves which are then transmitted through an antenna. The receiver processes the impinging electromagnetic wave and detects the transmitted information. The typical carrier frequencies are 0.9 GHz, 1.8 GHz, 2.4 GHz, etc. for cellular wireless networks. The main effects on the information transmission arises due to the propagation effects on the electromagnetic waves due to reflection, absorption and constructive and destructive combining of these electromagnetic waves. Therefore we first study these effects and their impact on communication.

7.1.1 Free space propagation

Free space propagation occurs when the transmitter and the receiver have an unobstructed line-of-sight path between them. For a fixed transmitting and fixed receiving antenna, and for a pure sinusoid \(\cos 2 \pi ft \) transmitted, the observed electric field (far field) at time \(t \) and position \((r, \theta, \psi) \) is

\[
E[f, t, (r, \theta, \psi)] = \frac{1}{r} \text{Re}[\alpha_s(\theta, \psi, f)e^{j2\pi f(t-r/c)}] \tag{7.1}
\]

where \(\alpha_s(\theta, \psi, f) \) is the radiation pattern of transmitting antenna, \(c = 3 \times 10^8 \) (velocity of light). Note that phase variation of \(fr/c \) is just due to the delay caused by radiation travelling at the speed of light. The receiving antenna could have a radiation (reception) pattern of its own and this could modify the observed electric field. This just means \(\alpha(\theta, \psi, f) \) replaces \(\alpha_s(\theta, \psi, f) \) where \(\alpha(\theta, \psi, f) = \alpha_s(\theta, \psi, f)\alpha_r(\theta, \psi, f) \).

Therefore the received electric field at the antenna is

\[
E[f, t, (r, \theta, \psi)] = \frac{1}{r} \text{Re}[\alpha(\theta, \psi, f)e^{j2\pi f(t-r/c)}]. \tag{7.2}
\]

Notes:

1. Notice that in (7.2) the electric field decays as \(\frac{1}{r} \) as a function of distance between transmitting and receiving antennas. Thus the power behaves as,

\[
P_r = \frac{|\alpha(\theta, \psi, f)|^2}{r^2} \tag{7.3}
\]
and hence decays as $\frac{1}{r^2}$, as a function of the distance. This is often called the squared law loss and determines how far we can have the transmitter and receiver, implying the coverage area of a base-station for example.

2. The relationship in (7.2) holds only for free space propagation, i.e. no absorption, no reflections or scattering.

3. The radiation pattern of the transmitting antenna could be directional and also cause phase variations.

4. It is clear that (7.2) does not hold for $r = 0$, i.e., this is a far field model when the transmitter and the receiver are far apart.

5. **Linearity**: The observed electric field is linear in the input, i.e. if we transmit a sum (superposition) of two sinusoids, the output will be the sum of the outputs one would have observed if each of them were transmitted alone. This is an important feature of the propagation behavior that will be used in the channel models later.

7.1.2 Ground Reflection

In typical scenarios, an unobstructed line-of-sight path between the transmitter and the receiver is rare. We will now look at our first modification of the free space model developed in Section 7.1.1. A two-ray ground reflection model is a usual first step in demonstrating the kind of impairments we would see in a real propagation environment. Even though such a model (shown in Figure 7.4) does not capture all the complexities of a real-world channel, it gives us a taste of what to expect. In Figure 7.4, we consider a typical scenario where one antenna (say the transmitter) is much higher (at a height h_t) than the receiver (at height h_r). This might represent a base-station transmitting to a mobile unit. We consider a perfect omnidirectional transmitter and receiver, i.e., $\alpha(\theta, \psi, f) = 1$.

![Figure 7.4: A two-ray ground reflection model.](image)

We assume that receiver observes two versions of the transmitted wave, one which reaches it directly and we call this E_{direct} and the other which reflects off the ground and reaches it after travelling a total distance of r_b. Due to linearity, the total electric field is the sum of these two components given by,

$$E(f, t) = E_{\text{direct}}(f, t) + E_{\text{refl}}(f, t)$$ \hspace{1cm} (7.4)

Let E_0 be the observed electric field at a reference distance d_0 from the transmitter. If the ground is a perfect reflector, then

$$E_{\text{direct}} = \frac{E_0 d_0}{r_d} \cos \left(2\pi f \left(t - \frac{r_d}{c} \right) \right)$$

$$E_{\text{refl}} = -\frac{E_0 d_0}{r_b} \cos \left(2\pi f \left(t - \frac{r_b}{c} \right) \right)$$
where \(r_d \) is the distance travelled by the direct wave, i.e., \(r_d \) is the distance from transmitter to receiver and \(r_b \) is the total distance travelled by reflected wave.

Now, let us define the path difference \(\Delta \) as,

\[
\Delta = r_b - r_d = \sqrt{(h_t + h_r)^2 + r_0^2} - \sqrt{(h_t - h_r)^2 + r_0^2}
\]

\[
= r_0 \left[1 + \left(\frac{h_t + h_r}{r_0} \right)^2 \right]^{1/2} - r_0 \left[1 + \left(\frac{h_t - h_r}{r_0} \right)^2 \right]^{1/2}
\]

\[
\approx r_0 \left[1 + \frac{1}{2} \left(\frac{h_t + h_r}{r_0} \right)^2 \right] - 1 - \frac{1}{2} \left(\frac{h_t - h_r}{r_0} \right)^2
\]

\[
= \frac{1}{2r_0} \left[(h_t + h_r)^2 - (h_t - h_r)^2 \right] = \frac{1}{2r_0} (4h_t h_r) = \frac{2}{r_0} h_t h_r
\]

where (a) occurs due to geometry in Figure 7.5 i.e.,

\[
\begin{align*}
 r_b^2 &= (h_t + h_r)^2 + r_0^2 \\
r_d^2 &= (h_t - h_r)^2 + r_0^2
\end{align*}
\]

and the approximation (b) is for \(r_0 \gg (h_t + h_r) \). This means that the distance between the transmitter and the receiver are much larger than the antenna heights. Hence we get

\[
\Delta = r_b - r_d \approx \frac{2}{r_0} h_t h_r
\]

Therefore using this in (7.4) we get

\[
\mathbf{E}(f, t) = \frac{E_0 d_0}{r_d} \cos \left[\frac{2\pi f}{c} \left(t - \frac{r_d}{c} \right) \right] - \frac{E_0 d_0}{r_b} \cos \left[\frac{2\pi f}{c} \left(t - \frac{r_b}{c} \right) \right]
\]

\[
\approx \frac{E_0 d_0}{r_0} \cos \left[\frac{2\pi f}{c} \left(t - \frac{r_0}{c} \right) \right] - \frac{E_0 d_0}{r_0} \cos \left[\frac{2\pi f}{c} \left(t - \frac{r_0}{c} \right) \right]
\]

where the approximation is because \(r_b = \sqrt{(h_t + h_r)^2 + r_0^2} \approx r_0 \) and \(r_d = \sqrt{(h_t + h_r)^2 + r_0^2} \approx r_0 \) in the first order.

Figure 7.5: Trigonometry to find path differences.

Now, let us consider the complex representation of the electric field. One can get to the previous repre-
CHAPTER 7. WIRELESS CHANNEL MODELS

sentation by taking the real part.
\[
\mathbf{E}(f,t) = \frac{E_0d_0}{r_d} e^{j\omega(t - \frac{c}{2r_d})} - \frac{E_0d_0}{r_b} e^{j\omega(t - \frac{c}{2r_b})}
\]
\[
\approx \frac{E_0d_0}{r_0} \left[e^{j\omega(t - \frac{c}{2r_0})} - e^{j\omega(t - \frac{c}{2r_0})} \right]
\]

where as before the approximation is that \(\frac{1}{r_d} \approx \frac{1}{r_b} \approx \frac{1}{r_0} \) in the far field. Moreover we have used the notation \(\omega = 2\pi f \), for brevity.

Using this we get
\[
\mathbf{E}(f,t) \approx \frac{E_0d_0}{r_0} e^{j\omega t} \left[e^{j\omega \frac{r_b - r_d}{c}} - e^{-j\omega \frac{r_b - r_d}{c}} \right]
\]
\[
= \left[\frac{E_0d_0}{r_0} \right] e^{j\omega t} e^{-j\omega \frac{r_b - r_d}{c}} \left[e^{j\omega \frac{r_b - r_d}{c}} - 1 \right].
\]

Now to find the power we need the total magnitude of the electric field, i.e.,
\[
|\mathbf{E}(f,t)| = \left| \frac{E_0d_0}{r_0} \right| |e^{j\omega \left(\frac{r_b - r_d}{c} \right)} - 1|
\]

Consider the second term above,
\[
|e^{j\omega \left(\frac{r_b - r_d}{c} \right)} - 1|^2 = \left\{ \cos \left(\omega \left(\frac{r_b - r_d}{c} \right) \right) - 1 \right\}^2 + \sin^2 \left[\omega \left(\frac{r_b - r_d}{c} \right) \right]
\]
\[
= 1 + 1 - 2 \cos \left(\omega \left(\frac{r_b - r_d}{c} \right) \right)
\]
\[
= 2 \left\{ 1 - \cos \left(\omega \left(\frac{r_b - r_d}{c} \right) \right) \right\}
\]
\[
= 2 \left(2 \sin^2 \left(\omega \left(\frac{r_b - r_d}{2c} \right) \right) \right)
\]

Therefore now we use the approximation developed in (7.6) as,
\[
|\mathbf{E}(f,t)| \approx \frac{E_0d_0}{r_0} \left[2 \sin \left(\omega \left(\frac{r_b - r_d}{2c} \right) \right) \right]
\]
\[
\approx \left(a \right) \frac{E_0d_0}{r_0} \left[2 \sin \left(\omega \frac{2h_0 h_d}{r_0 2c} \right) \right]
\]
\[
= \left(b \right) \frac{E_0d_0}{r_0} \left[\frac{2 \omega h_0 h_d}{c} \right]
\]
\[
= \frac{1}{r_0} \left[\frac{2 E_0d_0 h_0 h_d}{c} \right]
\]

where (a) occurs due to the approximations in (7.6) and (b) occurs because \(\sin \theta \approx \theta \) for small \(\theta \).

Hence the received power decays as \(\frac{1}{r_0^2} \) instead of \(\frac{1}{r_0^2} \) as was seen in the free space propagation model. This drastically different behavior in the power decay shows that complex reflections can alter the decay behavior with distance.

The main ideas from radio wave propagation considered in Section 7.1.1 and 7.1.2 can be summarized as follows.
1. The free space transmission resulted in a linear time-invariant system with a power decay of $\frac{1}{r_0^2}$, where r_0 was the distance between sender and receiver.

2. For a ground reflection, which occurs frequently in rural and suburban environments, the power loss become $1/r_0^4$ i.e., it decays much faster than in free space. Therefore in general the radio wave propagation causes a decay of power as

$$P_r \propto \frac{1}{r^\beta}$$

(7.7)

where $\beta \geq 2$. Typically $\beta \in [2, 6]$.

7.1.3 Log-normal Shadowing

The model given in (7.7) may not completely capture the power loss behavior. Unfortunately the radio propagation environment is much more complicated than just a reflection model. Typically radio waves get reflected, absorbed, scattered and diffracted. All these depend very highly on the particular propagation environment. For example, the presence of a large building causing absorption, or a rough surface causing scattering means that one cannot easily predict the radio wave propagation behavior. Here is where we first encounter a stochastic model for the propagation, where the randomness corresponds to the unknown or uncertain propagation environment.

Given that just the “distance loss” behavior of (7.7) does not account for the complete effects of radio propagation, we introduce the notion of shadowing to account for the randomness in the propagation environment. It has been empirically observed that the received signal power $P_r(r_0)$ as a function of distance r_0 between transmitter and receiver behaves as,

$$P_r(r_0) \propto \frac{S}{(r_0)^\beta}$$

(7.8)

where S is a random variable (shadowing) accounting for some of the uncertainties in the propagation environment. Through empirical studies it has been observed that the random variable S behaves as a log-normal distribution, i.e., $\log S$ is a zero-mean Gaussian distributed random variable with a given variance. This model attempts to account for the variability in the empirical signal seen, even for the same distance separation between the transmitter and the receiver. Therefore the model in (7.8) shows that the received signal levels at a particular transmitter-receiver separation of r_0 is a random variable.

In terms of signal power measured in dB,

$$10 \log P_r(r_0) = K + 10 \log S - 10\beta \log r_0,$$

where K is the proportionality constant. Since $\log S$ is modelled as zero-mean, the mean received power in dB is that given by the distance loss and the shadowing adds on to this with a normal distribution.

In summary the shadowing represents the absorption and clutter loss which depends on the unknown (and uncertain) propagation environment. This is our first encounter with such randomness in the modelling. We will encounter it again in the next section where we consider mobility. Note, however that the shadowing loss is modelled only for fixed environments. The modelling of shadowing for mobile environments is quite difficult.

7.1.4 Mobility and multipath fading

Up to now the propagation effects have been perhaps random but time-invariant. In this section we introduce one of the distinguishing features of wireless channels, i.e., time-variation. These rapid fluctuations in signal strength are called fading and are caused by constructive and destructive interference of
reflected waves. We have already seen the effect of such superposition in Section 7.1.2 where we saw the combination of a direct and a ground reflected wave. The essential difference here is that the receiver and/or the transmitter is mobile and hence these superpositions change over time causing the rapid signal strength fluctuations. These are small-scale effects in that the distance travelled is of the order of several wavelengths of the carrier wave in order to observe these variations. Therefore the signal strength variations do not occur due to changes in the propagation environment (i.e., reflectors, etc.) but due to phase changes in the “multipath” superposed reflections themselves.

Doppler Shift: Consider a mobile moving at a constant velocity \(v \), along a path \(AB \) as illustrated in Figure 7.6. Suppose, as shown in Figure 7.6 there is a remote fixed transmitter \(T \).

![Figure 7.6: Doppler shift.](image)

The difference in path length travelled by a wave from \(T \) to the mobile at \(A \) and \(B \) is \(\Delta p = d \cos \theta = v \Delta t \cos \theta \) where \(\Delta t \) is the time needed for the car to go from \(A \) to \(B \) and \(\theta \) is the angle between \(AB \) and \(AT \). Here we have assumed that \(T \) is far enough that the angles from \(A \) and \(B \) are the same, i.e., \(\theta \). Therefore due to the path length difference the phase difference of the radio wave is

\[
\Delta \phi = \frac{2\pi \Delta p}{\lambda} = \frac{2\pi v \Delta t}{\lambda} \cos \theta
\]

where \(\lambda \) is the wavelength of the carrier. Therefore the apparent change in frequency is given by

\[
f_d = \frac{1}{2\pi} \frac{\Delta \phi}{\Delta t} = \frac{v}{\lambda} \cos \theta.
\]

The relationship given in (7.9) relates the mobile speed to the change in frequency, which is called the Doppler shift. This is a phenomenon one might have encountered often when a police siren seems to increase in frequency while approaching while decreasing when it is receding. Though the siren is always transmitting at the same frequency a fixed listener observes a variation in the frequency and this effect is called the Doppler effect after its discoverer. Clearly, in (7.9) we see that if the mobile is moving towards \(T \), i.e., \(\theta > 0 \), then the frequency shift is positive (i.e., apparent frequency is higher) and the shift is negative when it is receding from \(T \) (i.e., \(\theta < 0 \)).

Now, this Doppler shift is the cause for the time-variation seen in wireless channels. The situation becomes more complex when the mobile receives not one copy but several reflected copies of the signal transmitted by \(T \). This can be modelled as having several virtual sources \(\{T_i\} \) transmitted to the mobile.
Now, consider the effect of (7.9) on the received electric field, given in (7.1). The change in frequency causes the received field at point B to be

$$E(f, t) \approx \frac{1}{r_0} \text{Re}[\alpha(\theta, \psi, f) e^{j2\pi(f+f_d)t}]$$

For an ideal omni-directional transmitter and receiver, the complex electric field is given by

$$E(f, t) = \left[\frac{1}{r_0} e^{j2\pi ft} \right] e^{j2\pi f_d t}$$

Therefore in the baseband and after compensation of distance loss we get

$$E_b(t) = e^{j2\pi f_d t}$$

Now, this is for a single path and for reflections we get several virtual sources, i.e., the received baseband signal is

$$y(t) = \sum_{l=1}^{L} c_l e^{j2\pi [\frac{\lambda}{r_0} \cos \theta_l] t}$$ \hspace{1cm} (7.10)

where $\{\theta_l\}$ are the angles to the different reflectors and $\{c_l\}$ are the (complex) reflection coefficients of each of the reflectors. This is because each of the reflectors could cause phase shift as well as absorb to reduce the amplitude. This is illustrated in Figure 7.7.

In general, the reflectors could be such that one also gets delayed versions of the signal, but this is an effect we will study in Section 7.2.

The model given in (7.10) was for a single sinusoid sent at a carrier frequency and it showed the baseband equivalent signal. Now, if a narrowband signal $x(t)$ was sent instead of a pure sinusoid, then the received signal would be,

$$y(t) = \sum_{l=1}^{L} c_l e^{j2\pi [\frac{\lambda}{r_0} \cos \theta_l] t} x(t)$$

$$\Delta \quad f(t)x(t)$$ \hspace{1cm} (7.11)

The relationship in (7.11) illustrates two things. One, that the equivalent channel is multiplicative, i.e., the channel $f(t)$ is time-varying and causes the received signal strength fluctuations. Second, the overall system behavior is that of a linear time-varying system.
CHAPTER 7. WIRELESS CHANNEL MODELS

7.1.5 Summary of radio propagation effects

There were three main effects that we studied in Sections 7.1.1-7.1.4, i.e., distance loss effect, shadowing and multipath fading. Overall, for a baseband signal if a narrowband signal \(x(t) \) is transmitted, then the received signal is

\[
y(t) = \frac{S}{(r_0)^2} f(t)x(t),
\]

where \(S \) represents the random log-normal shadowing described in Section 7.1.3, \((r_0)^2 \) loss describes the distance loss and \(f(t) \) describes the small-scale fast fading alternation. In most baseband systems, the relatively constant qualities of the shadowing and distance loss are compensated by automatic gain control. Therefore the multipath fading becomes the dominant effect for a communication system design and analysis. Clearly the overall model depends on unknown propagation environment that changes over time. Thus leads to modelling the channel as a random variable with given probability laws which are characterized empirically.

7.2 Wireless communication channel

As can be seen from the discussion in Sections 7.1.3-7.1.5, the propagation models for the wireless channel can quickly become quite complicated. As mentioned in Section 7.1.4, there can also be delays \(\{\tau_d\} \) between different reflected waves (see also Figure 7.8) and hence we can get the received baseband signal to be,

\[
y(t) = \sum_{d=1}^{D} S_d f'_d(t) x(t - \tau_d) = \sum_{d=1}^{D} f_d(t)x(t - \tau_d) \tag{7.12}
\]

where \(D \) are the number of delayed paths with \(S_d \) and \(r_d \) respectively the shadowing and distance losses of the delayed paths. There could be several reflectors at approximately the same delay \(\{\tau_d\} \), and hence as in Section 7.1.4, (7.11), we have

\[
f'_d(t) = \sum_{l=1}^{L_d} c_l(d)e^{j2\pi \cos \theta_l(d)t}, \quad d = 1, ..., D. \tag{7.13}
\]

Adding is the usual receiver noise into (7.12), we get the received signal to be

\[
y(t) = \sum_{d=1}^{D} f_d(t)x(t - \tau_d) + z(t) \tag{7.14}
\]
where \(z(t) \) is typically additive Gaussian noise and we have defined \(f_d(t) = \frac{\mathcal{S}}{\tau_d} f_d' \). As can be seen, the description of the model depends crucially on the multipath fading \(\{ f_d(t) \} \) as well as the delays \(\{ \tau_d \} \) aside from the coarser quantities of distance loss and shadowing. The power of each delayed path depends on the coarser quantities which leads to the power-delay profile in (7.14) which is the main model for communication.

7.2.1 Linear time-varying channel

The model given in (7.14) can be represented as a linear time-varying channel as follows. We can rewrite (7.14) as,

\[
y(t) = \int h_p(t; \tau) x(t - \tau) d\tau + z(t)
\]

where

\[
h_p(t; \tau) = \sum_{d=1}^{D} f_d(t) \delta(\tau - \tau_d).
\]

This compactly represents the linear time-varying channel imposed by the electromagnetic wave propagation. Now, we can go to the discrete time model by sampling at Nyquist rate. Note that for a time-varying system this means sampling at a rate higher than \(2(W_I + W_s) \) where \(W_I \) is the input bandwidth and \(W_s \) is the bandwidth of the channel time-variation. Now if we sample at times \(T_s < \frac{1}{2(W_I + W_s)} \), then

\[
y(kT_s) = \int h_p(kT_s; \tau) x(kT_s - \tau) d\tau + z(kT_s).
\]

Now, if the transmitted signal was modulated as in Chapter 4, then

\[
x(t) = \sum_{n} x_n \varphi(t - nT)
\]

Where \(T \) is the symbol period and as in Chapter 4, we have assumed \(N = 1 \) complex dimensions for the modulation. Therefore if we assume that \(T_s = \frac{T}{L} \), where \(L \) as in Chapter 5 is the “over sampling” factor, then,

\[
y_i(k) \triangleq y(kT - \frac{iT}{L}) = \sum_{d=1}^{D} f_d(kT - \frac{iT}{L}) \sum_{n} x_n \varphi(kT - \frac{iT}{L} - \tau_d - nT) + z(kT - \frac{iT}{L}) \\
= \sum_{n} x_n \sum_{d=1}^{D} f_d(kT - \frac{iT}{L}) \varphi \left[(k-n)T - \frac{iT}{L} - \tau_d \right] + z_i(k) \\
= \sum_{m} x_{k-m} \left\{ \sum_{d=1}^{D} f_d(kT - \frac{iT}{L}) \varphi(mT - \frac{iT}{L} - \tau_d) \right\} + z_i(k) \\
\Delta \sum_{m} x_{k-m} h_i(k; m) + z_i(k)
\]

where

\[
h_i(k; m) = \sum_{d=1}^{D} f_d(kT - \frac{iT}{L}) \varphi(mT - \frac{iT}{L} - \tau_d)
\]
Therefore a vector linear time-varying channel model is,

\[
y(k) = \begin{bmatrix} y_0(k) \\ \vdots \\ y_{L-1}(k) \end{bmatrix} = \sum_m h(k; m)x_{k-m} + z(k) \tag{7.15}
\]

where

\[
h(k; m) = \begin{bmatrix} h_0(k; m) \\ \vdots \\ h_{L-1}(k; m) \end{bmatrix}, \quad z(k) = \begin{bmatrix} z_0(k) \\ \vdots \\ z_{L-1}(k) \end{bmatrix} \tag{7.16}
\]

The model given in (7.15) is the linear time-varying model that summarizes the effects of the radio wave propagation on the communication channel.

Notes:

1. This model looks very similar to the one we have been studying till now in this class. The main difference is that the linear time-invariant channel has been replaced by the linear time-varying channel.

2. The impulse response \(h(k, l) \) is composed of several components, due to reflection, absorption, path loss, an multipath combining. Instead of a detailed model for this, it is more fruitful to describe it statistically, as we will do in Section 7.2.2.

3. The processes \(f_d(t) \) vary in time and their correlation depends on the relative velocity between sender and receiver. The bandwidths of these variations depend on the Doppler shifts of the reflected paths. Thus the random process \(f_d(t) \) has a spectral bandwidth which is roughly proportional to \(f_c \frac{v}{c} \). For example at \(f_c = 1 \text{ GHz}, v = 30 \text{ m/s} (\approx 60 \text{ mph}) \), the bandwidth of variation is approximately 100 Hz.

4. The time-scales become important. During a transmission burst which might last a few seconds at most, the path loss, shadowing (absorption) and the reflectors remain approximately constant. The main variation comes from Doppler spread i.e., mobility. Hence, the variation in \(f_d(t) \) arises mainly from this effect.

7.2.2 Statistical Models

In the model given in (7.15), one can describe in fine detail each of the quantities influencing \(h(k; m) \) in terms of the reflector geometries and the delays. However, as one can imagine, such a description can quickly become difficult in most realistic environments. Therefore we revert to a statistical (random) channel description that captures the spirit rather than each of the fine details.

The first question is about the behavior of \(f_d(t) \) given in (7.13), which greatly influences the linear time-varying response \(h(k; m) \). Given that it corresponds to the addition of several random quantities,
one can surmise that it can be well modelled by a Gaussian stochastic process. In fact this has also been well justified by empirical studies. It has been shown that it can be well modelled as a complex Gaussian process which has a power spectral density which is relatively flat over a bandwidth of \(\frac{\lambda}{2} \) Hz, where \(\lambda \) is the carrier wavelength. Therefore we have the model that \(f_d(t) \) is Gaussian with

\[
S_{f_d}(\omega) = \begin{cases} \frac{1}{\pi \sigma^2}, & |\omega| < 2\pi \frac{\lambda}{2} \\ 0, & \text{else} \end{cases}
\]

(7.17)

where \(W_s = \frac{\lambda}{2} \). It is also a good model that the reflectors at different delays have independent fading, i.e., \(\{f_d(t)\} \) are i.i.d. over \(d = 1, ..., D \). Therefore we have statistical description of the fading processes \(\{f_d(t)\} \).

The delays \(\{\tau_d\} \) are difficult to characterize empirically. Depending on the propagation environment (urban, sub-urban or rural) the maximal delay \(\tau_D \) can be characterized. For example in urban environments, \(|\tau_D| < 5 \) \(\mu \)sec. Where as in rural environments one could have larger delays of the order of tens of \(\mu \)secs. This corresponds to reflectors being further away like mountains etc. Note that a 1 \(\mu \)sec delay implies a distance of 300 m \((3 \times 10^8 \times 10^{-6} = 300)\). As mentioned earlier, there is a power-delay profile associated with \(\{f_d(t)\} \). Usually the larger delay reflections have lower power since they have travelled a larger distance. However the effects of shadowing means that there is randomness in the power-delay profile as well. Therefore there are the models for the delays depending on the environment and typically the models are given for urban, sub-urban or rural propagation scenarios.

Special Cases

1. Linear time invariant model: if \(v = 0 \), i.e., the mobile is stationary, then \(f_d(t) \) is independent of \(t \), (see (7.14)), and we recover a linear time invariant model since \(h(k; m) = h(0; m) \), and hence (7.15) becomes

\[
y(k) = \sum_m h(0; m)x_{k-m} + z(k)
\]

2. Flat fading model: If the delay spread i.e., \(\max_d \tau_d = \tau_D \), is small, i.e, \(\tau_D \approx 0 \), then we get

\[
h_i(k; m) = \left[\sum_{d=1}^{D} f_d(kT - \frac{dT}{L}) \right] \varphi(mT - \frac{dT}{L})
\]

Hence

\[
h_0(k; m) = \left[\sum_{d=1}^{D} f_d(kT) \right] \varphi(mT).
\]

Therefore, for this case with \(L = 1 \), we get for pulse shapes like the sinc pulse which have

\[
\varphi(mT) = 0, \quad m \neq 0
\]

the flat fading model where there is no inter-symbol interference, i.e.,

\[
y_0(k) = h_0(k; 0)x_k + z_0(k).
\]

This gives a frequency “non-selective” (i.e., no ISI) but time varying channel.
CHAPTER 7. WIRELESS CHANNEL MODELS

7.2.3 Time and frequency variation

In Chapter 4-6, we encountered ISI channels where the model was a linear time invariant channel. In this chapter the model of the wireless channel is one of linear time-varying channel. Now, the variation in time depends or the Doppler shifts as seen in (7.10), and therefore across all the reflected paths one can define the largest Doppler variations. Clearly this is upper bounded by $\frac{2v}{\lambda}$ and this is the maximal Doppler spread f_{max} of the time variation. This was the bandwidth of time variation used in (7.17) for the statistical model. This Doppler spread corresponds to how fast the channel varies over time. Hence we define the coherence time T_c as,

$$T_c \triangleq \frac{1}{f_{\text{max}}}$$

which corresponds approximately the time period over which the channel is expected to remain roughly the same. In a similar manner we can find the maximal delay spread of the channel response as $T_d = \max_d \tau_d$. This relates to the longest delay seen and characterizes the frequency variation of the random frequency response of the wireless channel. We define the coherence bandwidth W_c as

$$W_c \triangleq \frac{1}{2T_d}$$

which corresponds approximately to the frequency range over which we expect the response to be roughly the same.

Therefore we obtain characterization of the order-of-magnitude behavior in time and frequency of the random time-varying channel through the coherence time and coherence bandwidths. For example, if we are transmitting at 1 GHz, and a mobile is moving at 60 miles per hour (approximately $30\frac{m}{s}$) then we have $f_{\text{max}} = \frac{2v}{\lambda} = 200 \text{ Hz}$ and $T_c = 5 \text{ msec}$. Therefore approximately every 5 msec the channel becomes independent and this gives us an engineering insight into block lengths we could use and other design considerations. Similarly if we have a maximum delay spread of 20 μs, then $W_c = 2.5 \times 10^4$. Therefore for signal bandwidth of less than W_c, we would expect the variation of the channel in frequency to be small.

7.2.4 Overall communication model

The wireless model given in (7.15) forms the basis of all the discussion in Chapter 8. The model comprises of time-variation which is roughly characterized by the coherence time T_c, and frequency variation (approximately characterized by W_c, the coherence bandwidth). The frequency variation causes intersymbol interference and we have studied such impairments in Chapter 4-6. However due to time-variation one might encounter several realizations of the channel over a transmission burst and this is exactly the new feature in wireless communication. We will need to understand the impact of this on the communication system. Therefore we have a linear time-varying communication model that is modelled as a stochastic process as described in Section 7.2.2.

Block time-invariant models: In many situations it is useful to consider the channel as remaining constant over a small number of transmissions and then change to another value after that. For example if we transmit a block over a duration which is much smaller than the coherence time T_c of the channel, then for all practical purpose the channel encountered over the transmission block is constant. Then if the next transmission occurs at a time which is longer than T_c after the previous transmission, then the channel encountered can be well modelled as being independent of the previous transmission. This argument leads us to an intermediate model between a continuously varying channel and a time-invariant channel, i.e., a block time-invariant channel.

Consider a transmission of K symbols with symbol period T. If $kT \ll T_c$, then $\{h(k;n)\}$ are approximately the same for each of the symbols. If we call the transmission block b, then we can index the “constant” channel realization by $h^{(b)}$.
Now, if the next transmission occurs after T_I time where $T_I \gg T_c$, then the channel realization $h^{(b+1)}$ is well modelled as being independent of $h^{(b)}$ and identically distributed. Thus behavior is called a block time-invariant channel model.

Multiuser channels: In a multiuser setting of Chapter 9, we could have several users which have independent channels transmitting simultaneously to a single receiver. This model would a multiuser generalization to the point-to-point model given in (7.15). Such a generalization is the second distinguishing element of wireless channels and we will study the impact of multiuser interference in more detail in Chapter 9.
Chapter 8

Single-user communication

In wireless channels the detection problem is different from that considered for linear time-invariant channels (studied in Chapter 4-5) in two important ways. First as seen in Chapter 7, the wireless channel can vary quite rapidly (within a few milliseconds) and therefore one might not be able to have an accurate estimate of the channel. This is because the channel estimation schemes (such as those studied in Section 6.3) might not have enough training symbols to accurately estimate the rapidly varying channel. Therefore, we might have to design detectors that do not utilize the actual realization of the channel but only the known statistics of the channel. Such detectors are called non-coherent detectors as opposed to coherent detectors which use channel knowledge (or estimates) for detection. We will study non-coherent detectors in Section 8.1.2.

The second difference is in the error probability behavior. In the linear time invariant channels studied in Chapter 4-5, the error probability was averaged over the noise statistics alone. This was because the linear time-invariant channel was the same over the entire duration of the transmission. However, in wireless communication the channel need not be a constant over the duration of the transmission. Consider the block time-invariant model introduced in Section 7.2.4.

Given any transmission strategy and a detection strategy, clearly the error probability averaged over the noise statistics depends on the channel realization \(h(b; n) \), i.e.,

\[
P_e(b; x_b \neq x_b) = g(h(b); SNR)
\]

where \(g(\cdot, \cdot) \) is a function of \(h(b) \), the channel realization for transmission block \(b \), \(\{h(b)\} \) as well as the SNR. Now if we transmit over \(B \) such blocks, the average error block error probability is

\[
P_e(\{x\} \neq \{x\}) = \frac{1}{B} \sum_{b=1}^{B} P_e(b; \hat{x}_b \neq x_b).
\]

If the channel realization process \(\{h(b)\} \) is assumed to be i.i.d. over transmission blocks (or more generally stationary and ergodic), then over a large number of blocks (i.e., \(B \to \infty \)), the average block error probability would go to

\[
P_e = \mathbb{E}_h[P_e(\hat{x}_b \neq x_b)].
\]

Therefore there is a second averaging we need to perform for wireless channels which are over the channel statistics and this is a new feature we will encounter. As we will see in Section 8.1, this will considerably alter the behavior of the error probability with SNR.

In Section 8.1 we will study coherent and non-coherent detectors for the channel given in (8.1) and also find the behavior of the error probability with SNR. In Section 8.2 we will study the tool of diversity which is an important method to deal with the fading wireless channel.
8.1 Detection for wireless channels

In this section we will derive and analyse the average block error probability of detection for wireless channels. In Section 8.1.1, we analyse the coherent detector, where the channel varies slowly enough for us to “perfectly” estimate the channel and use the realization for detection. This is similar in flavor to detection schemes studied earlier in Chapters 2 and 4. However, when we have fast time-varying channels we may not have knowledge of the channel realization but only its statistical behavior. In such cases we have a non-coherent detection scheme as described in Section 8.1.2.

In the following we will for simplicity assume a flat fading model (see Section 7.2.2) where the baseband received signal in transmission block b, is well modeled as,

$$y(k) = h(b)x(k) + z(k), \ k \in T(b)$$ \hspace{1cm} (8.1)

with $h(b)$ being a complex Gaussian process which is i.i.d. over transmission blocks b. For notational reasons we will denote the time span of the b^{th} block by $T(b)$.

8.1.1 Coherent Detection

Suppose we estimate the channel and use this to detect the transmitted symbols. This is suitable if the channel was block time-invariant (as given in (8.1), also see Section 7.2.4). Therefore one could insert training symbols to estimate the particular channel realization for the block. If the channel varies slowly, we can get a very accurate estimate of it. Therefore we assume that the channel is known perfectly at the decoder. That is, for the maximum-likelihood decoding, for block b,

$$y(k) = h(b)x(k) + z(k), \ k \in T(b)$$

we get

$$\hat{x}_b = \arg \max_x \mathbb{P}(Y|X,h(b))$$

where $\{\hat{x}_b\} = \{\hat{x}(k)\}$ for the b^{th} block. Therefore the decision rule is

$$\hat{x}_b = \arg \min_x \sum_{k \in T(b)} |y(k) - h(b)x(k)|^2$$

since $\{z(k)\}$ is AWGN.

As mentioned earlier, the probability of error is calculated by averaging the error probability over many transmission blocks. For a given transmission block b, the error probability for binary transmission is

$$P_e(h(b)) = Q \left(\frac{d_{\text{min}}h(b)}{2\sigma_z} \right),$$ \hspace{1cm} (8.2)

as was derived in Chapter 2 where we notice that the error depends on minimum distance of the altered constellation $h(b)x(k)$.

It is well known that the $Q(\cdot)$ function decays exponentially, i.e.,

$$\frac{1}{2\sqrt{2\pi}x} \left[1 - \frac{1}{x^2} \right] e^{-\frac{x^2}{2}} \leq Q(x) \leq e^{-\frac{x^2}{2}}, \ x > 1$$

Therefore we have

$$P_e(h(b)) = Q \left(\frac{d_{\text{min}}h(b)}{2\sigma_z} \right) \leq e^{-\frac{d_{\text{min}}h(b)^2}{4\sigma_z}}.$$ \hspace{1cm} (8.3)
8.1. DETECTION FOR WIRELESS CHANNELS

Note that $P_e(h(b))$ is a random variable depending on the random channel realization $h(b)$. In order to find the error probability we need to calculate

$$P_e = \mathbb{E}_h \left(\frac{d_{min}|h(b)|}{2\sigma^2} \right) \leq \mathbb{E}_h e^{-\frac{\sigma^2}{8\sigma^2}} \tag{8.4}$$

Lemma 8.1.1. If $U \sim \mathcal{C}\mathcal{N}(0, K)$, $(K^{-1} + bA) > 0$, and $A = A^*$, for some $b \in \mathcal{C}$ then

$$E_U \left[e^{-\mathbf{u}^*\mathbf{u}} \right] = \frac{1}{|1 + bKU|} \tag{8.5}$$

Proof:

$$E_U \left[e^{-\mathbf{u}^*\mathbf{u}} \right] = \frac{1}{\pi |K_U|} \int_U \frac{1}{|K_U|} e^{-\mathbf{u}^*K^{-1}_U\mathbf{u}} e^{-\mathbf{u}^*\mathbf{a}} d\mathbf{u}$$

Let $K_U = (K^{-1} + bA)^{-1}$, then

$$E_U \left[e^{-\mathbf{u}^*\mathbf{u}} \right] = \frac{1}{\pi |K_U|} \int_U \frac{1}{|K_U|} e^{-\mathbf{u}^*K^{-1}_U\mathbf{u}} d\mathbf{u}$$

Now, we use this result in (8.4) to get an upper bound to the average error probability. By identifying $u = h(b)$, $A = \frac{d}{\sigma^2}$, $b = 1$ and $K_U = 1 = \mathbb{E}||h(b)||^2$, we get

$$P_e \leq \mathbb{E}_h \left\{ e^{-\frac{d^2}{\sigma^2}} \right\} = \frac{1}{1 + \frac{d^2}{\sigma^2}} \tag{8.6}$$

Therefore in BPSK transmission, with average energy \mathbb{E}_x, we have $d_{min} = 2\sqrt{\mathbb{E}_x}$ and hence we have,

$$P_e \leq \frac{1}{1 + SNR} \leq \frac{1}{SNR} \tag{8.7}$$

and hence the behavior of the error probability at high SNR is like $\frac{1}{SNR}$. This can be seen more explicitly by carrying out the calculation in (8.4) exactly.

This calculation is done in Appendix 8.A and the result from (8.29) is that,

$$P_e = \frac{1}{2} \left[1 - \frac{1}{\sqrt{1 + \frac{\mathbb{E}_x}{\sigma^2}}} \right].$$

Now, if we have BPSK, where $\pm \sqrt{\mathbb{E}_x}$ are the symbols, this gives $d_{min} = 2\sqrt{\mathbb{E}_x}$ and hence $\frac{d_{min}^2}{\sigma^2} = \frac{\mathbb{E}_x}{2\mathbb{E}_x} = \frac{\mathbb{E}_x}{\mathbb{E}_x} = SNR.$
Hence we have

\[P_e = \frac{1}{2} \left[1 - \frac{1}{\sqrt{1 + \frac{1}{SNR}}} \right] \quad (8.8) \]

Now, at high SNR, i.e., \(SNR \to \infty \), we have

\[P_e = \frac{1}{2} \left[1 - (1 + SNR^{-1})^{-\frac{1}{2}} \right] \approx \frac{1}{2} \left[1 - \frac{1}{2} \frac{1}{SNR} \right] \]

This gives at high SNR

\[P_e \approx \frac{1}{4SNR}, \]

which is the same behavior as was observed in \((8.6) \), where we just did the upper bound.

From this calculation we learn two important lessons. One is that at high SNR, the average error probability decays inversely with SNR instead of exponentially as in an AWGN channel. The second lesson is that the upper bound technique developed in Lemma 8.1.1 is actually tight at high SNR.

The first observation is quite striking since it means that to obtain the same error rates, one needs to go to much higher SNR in a fading channel as compared to that in a time invariant channel. The surprise is that this behavior occurs even with a coherent receiver which uses perfect channel information. A rough intuitive argument for this can be seen as follows. From \((8.2) \) we see that for a single frame the error probability is given by

\[P_e(h^{(b)}) = Q \left(\frac{d_{\text{min}}}{2\sigma_z} |h^{(b)}| \right) = Q \left(\sqrt{2SNR} |h^{(b)}| \right) \]

and hence if \(|h^{(b)}|\sqrt{2SNR} \gg 1 \), then \(P_e(h^{(b)}) \approx 0 \) and if \(|h^{(b)}|\sqrt{2SNR} \ll 1 \), then \(P_e(h^{(b)}) \approx \frac{1}{2} \). Therefore a frame is in error with high probability when the channel gain \(|h^{(b)}|^2 \ll \frac{1}{SNR} \), i.e., when the channel is in a “deep fade”. Therefore the average error probability is well approximated by the probability that \(|h^{(b)}|^2 \ll \frac{1}{SNR} \), and for high SNR we can show that

\[P \left(|h|^2 < \frac{1}{SNR} \right) \approx \frac{1}{SNR} \]

and this explains the behavior of the average error probability. Although this is a crude analysis, it brings out the most important difference between the AWGN and the fading channel. The typical way in which an error occurs in a fading channel is due to channel failure, i.e., when the channel gain \(|h| \) is very small, less than \(\frac{1}{SNR} \). On the other hand in an AWGN channel errors occur when the noise is large and since the noise is Gaussian, it has an exponential tail causing this to be very unlikely at high SNR.

8.1.2 Non-coherent Detection

As mentioned before, due to the fast time variation, one could have very imperfect knowledge of the channel state \(h^{(b)} \) in a particular block \(b \). This could occur if the block is too short and/or if the channel varies too fast. In such a case we can take an extremal view where we have no knowledge of the channel at the receiver, but only know its statistical behavior (i.e., that \(h^{(b)} \sim \mathcal{CN}(0,1) \) and that it is i.i.d. from block to block). In such a case the detector structure becomes different from the coherent detector studied in Section 8.1.1.

Let us consider a block time invariant model where

\[y(k) = h^{(b)}x(k) + z(k), \quad k \in T(b) \]
8.1. DETECTION FOR WIRELESS CHANNELS

Let \(h^{(b)} \sim \mathcal{CN}(0, 1) \) and let us make \(K \) observations, i.e., a transmission block of \(K \) symbols \((|T(b)| = K)\). If we collect these \(K \) samples in a vector form it gives us

\[
\mathbf{y} = \begin{bmatrix} y(K-1) \\ \vdots \\ y(0) \end{bmatrix} = h \begin{bmatrix} x(K-1) \\ \vdots \\ x(0) \end{bmatrix} + \begin{bmatrix} z(K-1) \\ \vdots \\ z(0) \end{bmatrix}
\]

Hence we get for the likelihood function

\[
P_{\mathbf{y}|\mathbf{x}}(\mathbf{y} | \mathbf{x}) \sim \mathcal{CN}(0, \mathbb{E}[|h|^2]\mathbf{x}\mathbf{x}^* + \sigma_z^2 \mathbf{I}_K).
\]

Hence for \(\mathbb{E}[|h|^2] = 1 \), the log-likelihood function is

\[
\log P_{\mathbf{y}|\mathbf{x}}(\mathbf{y} | \mathbf{x}) = -\log \pi - \log |\mathbf{x}\mathbf{x}^* + \sigma_z^2 \mathbf{I}_K| - \mathbf{y}^*(\mathbf{x}\mathbf{x}^* + \sigma_z^2 \mathbf{I}_K)^{-1}\mathbf{y}
\]

(8.9)

Now, \(|\mathbf{x}\mathbf{x}^* + \sigma_z^2 \mathbf{I}_K| = (\sigma_z^2)^K \mathbf{x}\mathbf{x}^* \mathbf{x}\mathbf{x}^* + \sigma_z^2 \mathbf{I}_K |^{(a)} \left(\frac{\mathbf{x}\mathbf{x}^*}{\sigma_z^2} + 1 \right) \left(\frac{\mathbf{x}\mathbf{x}^*}{\sigma_z^2} \right)^K
\]

where (a) follows because \(| \mathbf{I} + \mathbf{AB} | = | \mathbf{I} + \mathbf{BA} |.

Assumption: Now if we use a constant modulus transmission, i.e., \(|x(i)|^2 = \mathcal{E}_x\), which occurs for example with PSK constellations, we get

\[
|\mathbf{x}\mathbf{x}^* + \sigma_z^2 \mathbf{I}_K| = (\sigma_z^2)^K \left[1 + \frac{K\mathcal{E}_x}{\sigma_z^2} \right]
\]

which is independent of \(\mathbf{x} \). Therefore for the constant modulus constellation the maximum likelihood criterion from (8.9) gives us

\[
\hat{x} = \arg \max_{\mathbf{x}} \left\{ -\mathbf{y}^*(\mathbf{x}\mathbf{x}^* + \sigma_z^2 \mathbf{I}_K)^{-1}\mathbf{y} \right\}
\]

(8.10)

Now, if we use the matrix inversion lemma, Lemma 5.7.1, we have

\[
[\mathbf{x}\mathbf{x}^* + \sigma_z^2 \mathbf{I}_K]^{-1} = \frac{1}{\sigma_z^2} \mathbf{I}_K - \frac{1}{\sigma_z^2} \mathbf{x} \left[1 + \frac{\mathbf{x}\mathbf{x}^*}{\sigma_z^2} \right]^{-1} \frac{1}{\sigma_z^2} \mathbf{x}^*
\]

\[
= \frac{1}{\sigma_z^2} \left\{ \mathbf{I}_K - \frac{\mathbf{x}\mathbf{x}^*}{\sigma_z^2 + \mathbf{x}\mathbf{x}^*} \right\}
\]

(8.11)

where (b) follows due to the constant modulus assumption i.e., \(|x(i)|^2 = \mathcal{E}_x\), \(\forall i \). Using (8.11) in (8.10) the detection criterion becomes,

\[
\hat{x} = \arg \max_{\mathbf{x}} \mathbf{y}^* \mathbf{x} \mathbf{y} = \arg \max_{\mathbf{x}} |\mathbf{y}^*\mathbf{x}|^2
\]

(8.12)

Therefore we choose the input \(\mathbf{x} \) which has the largest projection (inner product) to the observation \(\mathbf{y} \). This is a useful interpretation that generalizes to several other non-coherent detection schemes. An illustration of a fast time-varying case for the non-coherent detector is given in Appendix 8.B.
Now, in Appendix 8.C we derive the error probability behavior of the detector given in (8.12). As seen in Appendix 8.C, even for the non-coherent case we get an error probability that decays as $\frac{1}{\sqrt{\text{SNR}}}$ at high SNR. Hence at high SNR, the main cause of error is a “bad” channel realization h. This is the main cause of the striking difference between fading channels and AWGN channels. A natural question to ask is whether there is a mechanism by which we can improve the performance of transmission over fading channels? This is what we study in Sections 8.2-8.4.

8.1.3 Error probability behavior

As has been seen in Section 8.1.1-8.1.2, and the detailed calculations in Appendices 8.A and 8.C, we see that the error probability for both the coherent and the non-coherent detectors behave inversely with SNR, at high SNR.

As mentioned earlier, this is in contrast to the AWGN channel where the error probability decreases exponentially with SNR. To get a feel for the difference, consider an AWGN channel with a $\frac{d_{\text{min}}}{2\sigma} = 13.5$ dB, then the error probability is

$$P_e = Q(10^{1.75}) \approx 10^{-6}$$

where as for a coherent detector we see from (8.8) that

$$\hat{P}_e = \frac{1}{2} \left[1 - \frac{1}{\sqrt{1 + 10^{-1.75}}} \right] \approx 0.01$$

Therefore the error probability is orders of magnitude larger. In fact to get to an error rate of 10^{-6}, for the fading channel one would need an SNR of over 60 dB! This shows that for reliable communication one would require other tools. These tools are called diversity which we study in Section 8.1.4.

Diversity order: In both the coherent and non-coherent cases we were interested in the error probability behavior in the high SNR regime. In order to compare the behavior of different systems in this regime, we use the notion of diversity order which is defined below.

Definition 8.1.1. A coding scheme which has an average error probability $P_e(SNR)$ as a function of SNR that behaves as

$$\lim_{\text{SNR} \to \infty} \frac{\log \hat{P}_e(SNR)}{\log(SNR)} = -d$$

is said to have a diversity order of d.

In words, a scheme with diversity order d has an average error probability of the order $\frac{1}{\text{SNR}^d}$ at high SNR. We would also use the notation

$$\hat{P}_e(SNR) \approx \text{SNR}^{-d}$$

to indicate such a relationship where we do not explicitly specify the constants involved.

8.1.4 Diversity

Fading channels imply that there could be a high probability of “link” failure. Therefore a natural approach is to send over several links each of which fail independent of one another. This is the basic idea of diversity, where we send information over links such that the probability of failure of all links is exponentially smaller than the fading of a single one. The main question is how such a mechanism changes performance and can we build transmission and reception schemes that utilize the presence of multiple conduits of information transmission.
There are several ways in which we can obtain diversity. One is over time, so that the channel fade realization varies independently. For example by transmitting symbols separated by the coherence time of the channel, the symbols experience independent fades.

A second mechanism is through frequency. In a frequency-selective channel (i.e. ISI channel) the path gains (fades) of the delayed paths could be (roughly) independent. Therefore this translates for the property that the frequency response of the channel is independent, if separated further than the “coherence bandwidth” of the channel.

A third mechanism is through space, i.e., when the signal is transmitted (and/or received) through multiple antennas. Since we saw that the response of the electromagnetic propagation depends on the spatial location, the spatial diversity samples this response at multiple locations by using multiple antennas. If the antennas are separated by distance larger than the “spatial coherence distance” then one would expect (almost) independent fading at the different antennas.

8.2 Time Diversity

Here we transmit information spread over a time period larger than the coherence time of the channel. Typically, we “interleave” the transmitted symbols so that they experience independent fading. An interleaver just permutes the transmitted symbols.

$$u(0), u(1), ..., u(N-1) \xrightarrow{\Pi} u(3), u(15), ...$$

\(\{u(k)\}\) \(\{x(k)\}\)

Figure 8.1: Interleaving operation.

For example for a given block size \(N\), the interleaver chooses a particular one of \(N!\) choices of permutation, and therefore the operation can be represented as \(x(k) = u(\pi(k))\). The goal is to “uniformly” intersperse the symbols in the block. If the interleaver is effective, the consecutive information symbols would be dispersed far enough to experience independent fading. If this occurs, then we get

$$y(k) = h(k)x(0) + z(k), \ k = 0, \ldots, D - 1 \tag{8.13}$$

and \(\{h(k)\}\) are i.i.d., i.e., we have independent fading over \(D\) symbols. Hence we are transmitting over \(D\) independent instantiations of the fading and have created time diversity. The question we address next is how to utilize the time diversity we have created.

8.2.1 Repetition Coding

The simplest way one can utilize the diversity if by repeating the same symbol over all the diversity paths. For example, in (8.13), we could send the same symbol \(x(0)\) for all times \(k = 1, \ldots, D - 1\). Then

$$y(k) = h(k)x(0) + z(k), \ k = 0, \ldots, D - 1$$

This yields,

$$\begin{bmatrix} y(D-1) \\ \vdots \\ y(0) \end{bmatrix} = \begin{bmatrix} h(D-1) \\ \vdots \\ h(0) \end{bmatrix} \begin{bmatrix} x(0) \end{bmatrix} + \begin{bmatrix} z(D-1) \\ \vdots \\ z(0) \end{bmatrix}. \tag{8.14}$$
Let us examine the probability that \(x'(0) \neq x(0)\) is chosen by a coherent detector for (8.14), for a given channel realization \(h\). If we denote this by \(\mathbb{P}(x(0) \rightarrow x'(0)|h)\), we then have

\[
\mathbb{P}(x(0) \rightarrow x'(0)|h) = \mathbb{P}
\begin{bmatrix}
||y - h_x'(0)||^2 < ||y - h_x(0)||^2 h
\end{bmatrix}
= Q\left(\frac{||h||d_{\text{min}}}{2\sigma}\right)
\tag{8.15}
\]

where \(d_{\text{min}}\) is the minimum distance of the constellation. Now, \(||h||^2 = \sum_{i=1}^{L-1} |h(l)|^2\), and if \(\{h(l)\}\) are i.i.d. complex Gaussian, i.e.,

\(h(l) \sim \mathcal{C}\mathcal{N}(0,1)\)

then \(||h||^2\) distribution can be found to be,

\[f_{||h||^2}(\alpha) = \frac{1}{(D-1)!} \alpha^{D-1} e^{-\alpha}, \quad \alpha \geq 0\]

Therefore to find the error probability for repetition coding, we would average (8.15) over the distribution of \(||h||^2\):

\[
\mathbb{P}(x(0) \rightarrow x'(0)) = \mathbb{E}_{||h||^2} [\mathbb{P}(x(0) \rightarrow x'(0)|h)]
= \mathbb{E}_{||h||^2} Q\left(\frac{||h||d_{\text{min}}}{2\sigma}\right)
\leq \mathbb{E}_{||h||^2} e^{-||h||^2 \frac{d_{\text{min}}^2}{8\sigma^2}}
= \frac{1}{(D-1)!} \int_0^\infty \alpha^{D-1} e^{-\alpha} e^{-\frac{d_{\text{min}}^2}{8\sigma^2}} d\alpha
= \frac{1}{(D-1)!} \int_0^\infty \alpha^{D-1} e^{-\alpha \left(1 + \frac{d_{\text{min}}^2}{8\sigma^2}\right)} d\alpha
= \frac{1}{\left(1 + \frac{d_{\text{min}}^2}{8\sigma^2}\right)^D}
\]

Note that we could have explicitly evaluated the error probability as we did in Appendix 8.A. However, since we are interested in high SNR behavior we use the Chernoff upper bound as done in (8.7). At high SNR this upper bound accurately depicts the error probability behavior.

If \(\frac{d_{\text{min}}^2}{8\sigma^2} = \text{SNR} \left(\frac{d_{\text{min}}^2}{4}\right)\) then,

\[
\mathbb{P}(x(0) \rightarrow x'(0)) \leq \frac{1}{\left(1 + \text{SNR} \frac{d_{\text{min}}^2}{4}\right)^D}
\leq \frac{4^D}{\text{SNR}^D (d_{\text{min}}^2)^D} \leq \text{SNR}^{-D}
\]

Hence, by using \(D\) diversity paths and sample repetition coding one changes the error probability behavior (at high SNR) from \(\frac{1}{\text{SNR}}\) to \(\frac{1}{\text{SNR}^D}\). This is really the value of using diversity paths and this is one of the best tools available to combat fading in wireless communications.
8.2. TIME DIVERSITY

8.2.2 Time diversity codes

Suppose we do not restrict ourselves to repetition coding, then we would return to (8.13) to rewrite it as

\[y(k) = h(k)x(k) + z(k), \quad k = 0, \ldots, D - 1 \]

Now, we wish to find the criteria for choosing \(f_x(k) \) to maximize performance (lower error probability).

\[\begin{bmatrix} y(D - 1) \\ \vdots \\ y(0) \end{bmatrix} = \begin{bmatrix} x(D - 1) & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & x(0) \end{bmatrix} \begin{bmatrix} h(D - 1) \\ \vdots \\ h(0) \end{bmatrix} + \begin{bmatrix} z(D - 1) \\ \vdots \\ z(0) \end{bmatrix} \]

which can be written as

\[y = Xh + z \quad (8.17) \]

Therefore for a block of transmissions, we can write the probability of a coherent detector erroneously \(x' \) instead of \(x \) for a given realization of the channel \(h \) (see also (8.15) for a similar argument) is given by,

\[P(X \rightarrow X'|h) = Q \left(\frac{h^*(X - X')^*(X - X')h}{4\sigma^2} \right)^{1/2} \]

If \(h \sim \mathcal{C}\mathcal{N}(0, 1) \) then again we can write the average pairwise error probability as,

\[P(X \rightarrow X') = \mathbb{E}_h [P(X \rightarrow X'|h)] \]

\[= \mathbb{E}_h Q \left(\frac{h^*(X - X')^*(X - X')h}{4\sigma^2} \right)^{1/2} \]

\[\leq \mathbb{E}_h e^{-h^*(X - X')^*(X - X')h/8\sigma^2} \]

\[\leq \frac{1}{1 + \frac{(X - X')^*(X - X')}{4\sigma^2}} \]

\[\leq \frac{1}{\prod_{l=0}^{D-1} \left(1 + \frac{|x(l) - x'(l)|^2}{4\sigma^2} \right)} \]

where (a) follows because of (8.3) and (b) follows by use of Lemma 8.1.1.

Now if, \(\{ l : x(l) \neq x'(l) \} = \mathcal{B} \), then

\[P(X \rightarrow X') \leq \frac{1}{\prod_{l \in \mathcal{B}} \left(1 + \frac{|x(l) - x'(l)|^2}{4\sigma^2} \right)} \equiv \frac{C}{(SNR)^{|\mathcal{B}|}} \]

Therefore the error probability behavior is dictated by \(\mathcal{B} \), which is the set over which the constellation symbols differ over the diversity paths. In order to get maximal decay rate of error probability, we want \(|\mathcal{B}| = D \), i.e., the transmitted symbols must be coded such that the distinct codewords differ on all diversity paths. Clearly the repetition code is a simple instance of this where distinct transmitted symbols would obviously differ on all diversity paths. However, the repetition code does so by sacrificing rate of transmission. Therefore the question is whether one can design codes which have higher transmission rate but obtain same error performance (at least the decay rate of error probability with SNR) as the repetition code. We will see that later by using spatial diversity.
8.3 Frequency Diversity

This is useful in a scenario where the transmission bandwidth is larger than the “coherence bandwidth” of the channel. This form of diversity is the dual of time diversity in that it utilizes the frequency variation of the channel (instead of time variations). The frequency variation arises because the multiple paths of the electromagnetic scattering (propagation) environment could be received at different delays. Therefore, if the fading on the different delayed paths are independent, one can obtain diversity by combining the (independent) delayed paths. Therefore in principle, they are identical to the time and spatial diversity methods. The reason why the delayed paths could experience independent fading is because, they encounter different scatterers (reflections) and hence the statistical variations (fading) would most likely be independent for different scatterers. Hence, if there exists a “delay spread” it leads to an intersymbol interference (ISI) channel which we have studied in great depth in the earlier part of this class.

There are primarily three ways of exploiting frequency diversity:

1. **Time-domain equalization**: Here optimal receivers that we have studied for ISI channels as well as sub-optimal equalizers can be shown to take advantage of frequency diversity.

2. **Multicarrier techniques (DMT/OFDM)**: In wireless channels, if the transmission block is small enough, then the channel is (approximately) constant over one transmission block. Therefore, in this block time-invariant model (studied in Section 7.2.4), the DMT/OFDM technique is able to create parallel channels in the frequency domain. If the (fading) coherence bandwidth is smaller than the overall transmission bandwidth, i.e., the channel (frequency) coefficients are independent if separated by a “large-enough” frequencies, (i.e., separated by the coherence bandwidth) we get frequency diversity.

3. **Spread spectrum technique**: Here the information is spread across a larger transmission bandwidth by using an operation involving pseudo-random noise sequences. Here parts of the channel spectrum which have high gain could be used to decode transmitted information. We will go into this in more detail in Chapter 9 in the context of multiple access channels.

Illustration of frequency diversity

The channel frequency selectivity is determined by the multipath delay spread, T_d introduced in Section 7.2.3. It is the bandwidth beyond which the channel response (in the frequency domain) are approximately independent. A measure of this is the coherence bandwidth, i.e.,

$$W_c = \frac{1}{2T_d}$$

It can also be related to the correlation between channel responses at two different frequencies, i.e. if

$$\Psi(\Delta f) = \mathbb{E}[H(f)H^*(f + \Delta f)]$$

the bandwidth of $\Psi(\cdot)$ is the coherence bandwidth of the channel.

Now, consider an OFDM scenario for the block time invariant channel, with N carriers,

$$Y(l) = H\left(\frac{2\pi l}{N}\right)X(l) + Z(l), \quad l = 0, \ldots, N - 1$$

Now, if we have a coherence bandwidth of W_c, then the frequency responses $\{H \left(\frac{2\pi l}{N}\right)\}$ which are separated by larger than this bandwidth are approximately independent. If total transmission bandwidth is
8.3. FREQUENCY DIVERSITY

Figure 8.2: Coherence bandwidth of ISI channel.

W_c, and we have N OFDM tones, then the frequency is divided into $\frac{W}{N}$ sized frequency bins. Hence, a separation by K_c tones would ensure independence, where

$$K_c = \frac{W_c}{W/N} = \frac{NW_c}{W}$$

Therefore we expect,

$$\mathbb{E} H \left(\frac{2\pi l}{N} \right) H^* \left(\frac{2\pi (l + K_c)}{N} \right) \approx 0$$

Thus if we divide the frequency into $\frac{W}{W_c}$ frequency bins of size W_c each, then we have $\left(\frac{W}{W_c} \right)$ diversity paths available to us. If we denote $D = \frac{W}{W_c}$, then we have created D independent instantiations of the random frequency response. Therefore we can use a model like (8.14) (or (8.15) for higher rates) to get an error probability behavior of $\frac{1}{SNR^D}$ (or $\frac{1}{SNR^B}$ for higher rates) just like we did in Section 8.2.

Figure 8.3: An illustration of frequency diversity.

WSSUS model: The argument given above illustrated the idea of frequency diversity but we can have a more precise development for a given channel model. Consider a block time-invariant model which has a finite impulse response with ν taps, i.e.,

$$H^{(b)}(D) = h_0^{(b)} + h_1^{(b)} D + ... + h_\nu^{(b)} D^\nu$$

Where the superscript (b) denotes the b^{th} transmission block (see also Section 7.2.4). Now, here is where a statistical model of the channel is used. We examine the case where the channel taps $\{h_i^{(b)}\}$ are i.i.d. for a given block b and are also independent across blocks (this latter model comes from the block time-invariant assumption). Therefore we have i.i.d. $h_i^{(b)} \sim \mathcal{CN}(0, 1), \ l \in [0, \nu]$ and also i.i.d across blocks.
This model is widely known as the wide-sense stationary uncorrelated scattering model (WSSUS) for a fading ISI Channel. We will use this model to examine the impact of frequency diversity. Note that

\[
E[H(\omega)H^*(\omega + W_S)] = E|h_0|^2 + E|h_1|^2e^{jW_S} + \ldots + E|h_\nu|^2e^{jW_\nu}
\]

\[
= \sum_{n=0}^{\nu} e^{jnW_S} = \frac{1 - e^{j(\nu + 1)W_S}}{1 - e^{jW_S}}
\]

Therefore for \(W_s = \frac{2\pi}{\nu + 1} \), we have independence between the frequency responses for the WSSUS model. Therefore the coherence bandwidth \(W_c = \frac{W}{\nu + 1} \), where \(W \) is the signal bandwidth. Thus the larger \(\nu \) implies a larger frequency diversity for a given transmission bandwidth in the WSSUS model.

8.3.1 OFDM frequency diversity

Now, let us consider using OFDM for the block time-invariant (WSSUS) model given in (8.18). Therefore if we use \(N \) carriers for each block we get, (see Section 6.2),

\[
Y(n) = H\left(\frac{2\pi}{N}n\right)X(n) + Z(n), \quad n = 0, \ldots, N - 1.
\]

First, let us consider repetition coding as was done in Section 8.2.1. Here we do the repetition in frequency, i.e., \(X(n) = X(0), \quad \forall n \), yielding

\[
\begin{bmatrix}
Y(N - 1) \\
\vdots \\
Y(0)
\end{bmatrix} =
\begin{bmatrix}
H \left(\frac{2\pi}{N}(N - 1)\right) \\
\vdots \\
H(0)
\end{bmatrix}
\begin{bmatrix}
X(0) \\
\vdots \\
Z(0)
\end{bmatrix}
\]

\[
\mathbf{Y} = \mathbf{H}X(0) + \mathbf{Z} \tag{8.19}
\]

Notice that (8.19) looks quite similar in form to (8.14). However we can see from (8.18) that

\[
\mathbf{H} = \begin{bmatrix}
1 & e^{j\frac{2\pi}{N}(N - 1)} & \ldots & e^{j\frac{2\pi}{N}(N - 1)} \\
\vdots & \vdots & \ddots & \vdots \\
1 & 1 & \ldots & 1
\end{bmatrix}
\]

\[
\tilde{\mathbf{F}} = \begin{bmatrix}
h_0 \\
h_1 \\
\vdots \\
h_\nu
\end{bmatrix} \tag{8.20}
\]

Note that \(\tilde{\mathbf{F}} \) is truncated DFT matrix and is full rank. Using (8.20) in (8.19), we get

\[
\mathbf{Y} = \tilde{\mathbf{F}}hX(0) + \mathbf{Z}
\]

A coherent detector for this will erroneously declare \(X'(0) \) to be the transmitted symbol instead of \(X(0) \) for a given realization \(\mathbf{h} \) with a probability of

\[
P\left(X(0) \rightarrow X'(0) \mid \mathbf{h}\right) = Q\left(\sqrt{\frac{[x'(0) - x(0)]^2 \mathbf{F}^* \tilde{F}\mathbf{h}}{2\sigma_z^2}}\right) \tag{8.21}
\]
where \(\sigma_z^2 \) is the variance of the (white) additive noise \(\{z(n)\} \). From (8.20) we see that \(\tilde{\Phi}^*\tilde{\Phi} = NI \). Therefore we get,

\[
\mathbb{P} \left(X(0) \rightarrow X'(0) \mid h \right) = Q \left(\frac{|x'(0) - x(0)|^2 h^* h}{2\sigma_z^2} \right)
\]

(8.22)

which is identical in form to (8.15) and hence we get

\[
P_e(x(0) \rightarrow x'(0)) \approx \frac{1}{SNR^{\nu+1}},
\]

giving us a diversity order of \(\nu + 1 \). Therefore the ISI taps play a role similar to the time diversity conduits given in 8.14.

In a manner similar to Selection 8.1.2, we can develop frequency diversity codes that get a rate larger than \(1/N+\nu \) and the analysis of such codes proceeds along similar lines as Section 8.1.2.

8.3.2 Frequency diversity through equalization

One can also exploit the available frequency diversity through the equalizer structures that we have studied in Chapter 5. We will consider the block time-invariant model. First let us examine the matched filter bound which is defined in Section 4.2. This is obtained in our case by sending one symbol every \((\nu + 1)\) time instants, and therefore there is no inter-symbol interference. in this case we get

\[
SNR_{MFB} = \frac{\xi_x}{\sigma_z^2} \left[\int_{\omega} |H(e^{j\omega})|^2 d\omega \right]
\]

which is the SNR of a matched filter that collects the energy from all the delayed versions of the transmitted symbol.

However, from the model given in (8.18) we see that

\[
H(e^{j\omega}) = \sum_{n=0}^{\nu} h_ne^{j\omega n} = [1, \ldots, e^{j\omega\nu}]h
\]

and therefore we have \(\int |H(e^{j\omega})|^2 d\omega = h^* h \), due to the orthogonality of the Fourier transform bases. Therefore the \(SNR_{MFB} \) is given by

\[
SNR_{MFB} = \frac{\xi_x}{\sigma_z^2} ||h||^2
\]

and is distributed exactly as in (8.14) and in (8.22) and therefore we expect the detector performance to give an average error probability

\[
P_e,MFB \approx \frac{1}{SNR^{\nu+1}}
\]

and hence the single shot transmission also gives us a diversity order of \(\nu + 1 \) as in OFDM. The main idea illustrated (using simplified models) in Section 8.2.1 and this Section is that frequency diversity through ISI can actually be exploited in a manner similar to time diversity. Actually, by using maximum likelihood sequence detection, if the transmitted sequences satisfy a certain regularity condition, then a diversity order of \(\nu + 1 \) can be obtained.

A natural question is the performance of linear equalizers and whether one can get frequency diversity through them. Let us consider the block time-invariant model, with block size large enough to be able to write the D-domain formulation as

\[
Y^{(b)}(D) = H^{(b)}(D)X(D) + Z(D)
\]

\(^1\)this can also be seen because \(\tilde{\Phi} \) is a truncated DFT matrix.
where \(S_z(D) = \sigma_z^2 \). Using the results from Section 5.4 for the MMSE-LE, we have

\[
W_{\text{MMSE-LE}}(D) = \frac{H^*(D^*) \mathcal{E}_x}{H(D) H^*(D^*) \mathcal{E}_x + \sigma_z^2}
\]

and

\[
S_{\text{EE}}(D) = \mathcal{E}_x - \frac{H(D) H^*(D^*) \mathcal{E}_x^2}{H(D) H^*(D^*) \mathcal{E}_x + \sigma_z^2} = \frac{\sigma_z^2 \mathcal{E}_x}{H(D) H^*(D^*) \mathcal{E}_x + \sigma_z^2} = \frac{\sigma_z^2}{H(D) H^*(D^*) + \frac{\mathcal{E}_x}{\mathcal{E}_x}}
\]

Therefore we have

\[
SNR_{\text{MMSE-LE}} = \frac{\mathcal{E}_x}{\sigma_z^2} \left\{ \int_{-\infty}^{\infty} \left[|H(e^{j\omega})|^2 + \frac{\mathcal{E}_x}{\mathcal{E}_x} \right]^{-1} d\omega \right\}^{-1}
\]

which depends on the random variable \(\int_{-\infty}^{\infty} \left[|H(e^{j\omega})|^2 + \frac{\mathcal{E}_x}{\mathcal{E}_x} \right]^{-1} d\omega \).

This computation in general is difficult, however for large SNR one can show that under suitable regularity conditions,

\[
SNR_{\text{MMSE-LE}} \geq c |\mathbf{h}|^2
\]

where \(c \) is a constant independent of \(\mathbf{h} \). Therefore we obtain

\[
P_e,\text{MMSE-LE} = \frac{1}{SNR^{c+1}}.
\]

We did not go through the details of this argument, but one can make this more precise. Therefore, we see that we can obtain frequency diversity through linear equalization as well.

8.4 Spatial Diversity

In this case one obtains diversity by placing multiple antennas at the transmitter and/or receiver. If the placement is such that the sample “independent” fading in space, one obtains a similar model for diversity as in time diversity. The crucial difference is that the spatial diversity is obtained by simultaneously transmitting and receiving symbols and therefore one can potentially increase transmission rate.

![Multiple antennas at base station](image)

![Multiple antennas at mobile](image)

Figure 8.4: Spatial diversity: Multiple transmit and receive antennas.
8.4. SPATIAL DIVERSITY

8.4.1 Receive Diversity

In this case the transmitter is as before, but the reception is done through multiple antennas, i.e.,

\[y_l(k) = h_l x(k) + z_l(k), \ l = 1, \ldots, D \]

where \(y_l(k) \) is the signal received on \(l \)th receive antenna at time instant \(k \), \(h_l \) is the fading variable/attenuation on the \(l \)th receive antenna, \(z_l(k) \) is the additive noise on \(l \)th receive antenna and \(x(k) \) is the symbol transmitted at time instant \(k \). Let us focus on a particular time instant \(k \).

\[y(k) = \begin{bmatrix} y_1(k) \\
& \ddots \\
& & y_D(k) \end{bmatrix} = \begin{bmatrix} h_1 \\
& \ddots \\
& & h_D \end{bmatrix} x(k) + \begin{bmatrix} z_1(k) \\
& \ddots \\
& & z_D(k) \end{bmatrix} \]

Therefore we get

\[y(k) = h x(k) + z(k) \quad (8.23) \]

This model seems identical to equation (8.14) and if the model for fading channel attenuation \(\{h(l)\} \) are the same, we would get the same performance. Hence, one gets for i.i.d. spatial fading

\[P_e(x(k) \rightarrow x'(k)) \approx \frac{1}{(SNR)^D} \]

Note that we get same performance as repetition coding but without the rate loss. Another way to observe the performance of receive diversity is as follows. It can easily be shown that a sufficient statistic for (8.23) is

\[\tilde{y}(k) = h^* y(k) = \sum_{l=1}^{L} h_l^* y_l(k) = ||h||^2 x(k) + h^* z(k) \]

Hence the receiver combines the signals from each antenna by weighting them according to the channel attenuation, and this is called a maximal ratio combiner. This also shows that the SNR at the receiver is \(||h||^2 \) SNR which has a form identical to (8.14) and therefore we get the same average error probability behavior.

Note that multiple antennas imply multiple radio frequency (RF) circuitry associated with each antenna and hence increased cost. Typically multiple antennas are available at the base station and hence one could envisage using them in the above manner to increase performance on “uplink”, i.e. mobile transmitting to base-station.

8.4.2 Transmit Diversity

If one has multiple antennas at the base-station, a natural question to ask is whether we can utilize them for transmission to a mobile (i.e. “downlink” transmission). This has been an active research area for the past decade or so and numerous interesting results have been obtained both for coding and signal processing schemes as well as bounds for fundamental limits of transmission (information theoretic bounds). We will illustrate some of the ideas of the topic through a simple example.

Alamouti code: Consider the scenario with 2 transmit antennas and 1 receive antenna.

\[y(k) = h_1(k) x_1(k) + h_2(k) x_2(k) + z(k) \]

\[y(k) = [h_1(k) \ h_2(k)] \begin{bmatrix} x_1(k) \\
& x_2(k) \end{bmatrix} + z(k) \quad (8.24) \]
Now let us examine a code over 2 consecutive instants of time where we assume that the channel is block time-invariant, i.e.,

\[h_1(k) = h_1(k+1) = h_1, \ h_2(k) = h_2(k+1) = h_2 \]

Moreover, let

\[x_1(k) = x_1, \quad x_1(k+1) = x_2 \]
\[x_2(k) = x_2^*, \quad x_2(k+1) = x_1^* \]

Then over two consecutive instants of time of (8.24) we get,

\[
\begin{bmatrix} y(k), y(k+1) \end{bmatrix} = [h_1 \ h_2] \begin{bmatrix} x_1 \ x_2^* \\ -x_2 \ x_1^* \end{bmatrix} + [z(k), z(k+1)] \quad (8.25)
\]

Note that,

\[y(k) = h_1 x_1 - h_2 x_2^* + z(k) \]
\[y(k+1) = h_1 x_2 + h_2 x_1^* + z(k+1). \]

Therefore we get,

\[y^*(k+1) = (h_1 x_2^* + h_2 x_1) + z^*(k+1) \]

Putting these together we have

\[
\begin{bmatrix} y(k), y^*(k+1) \end{bmatrix} = [x_1 \ x_2^*] \begin{bmatrix} h_1 \ h_2^* \\ -h_2 \ h_1^* \end{bmatrix} + [z(k), z^*(k+1)]. \quad (8.26)
\]

Therefore, using (8.26) we get,

\[
\begin{bmatrix} y(k), y^*(k+1) \end{bmatrix} = [x_1 \ x_2^*] \begin{bmatrix} h_1 \ h_2^* \\ -h_2 \ h_1^* \end{bmatrix} + [z(k), z^*(k+1)] \quad (8.27)
\]

Claim 8.4.1. The matrix \(\begin{bmatrix} h_1 & h_2^* \\ -h_2 & h_1^* \end{bmatrix} \) is unitary.

Proof:

\[
\begin{bmatrix} h_1 & h_2^* \\ -h_2 & h_1^* \end{bmatrix}^* \begin{bmatrix} h_1 & h_2^* \\ -h_2 & h_1^* \end{bmatrix} = \begin{bmatrix} h_1 & h_2^* \\ -h_2 & h_1^* \end{bmatrix}^* \begin{bmatrix} h_1 & h_2^* \\ h_2 & h_1 \end{bmatrix} = \begin{bmatrix} |h_1|^2 + |h_2|^2, & h_1(-h_2^*) + (h_2^*)h_1 \\ (-h_2)h_1^* + (h_1^*)(h_2), & |h_1|^2 + |h_2|^2 \end{bmatrix} = \begin{bmatrix} (|h_1|^2 + |h_2|^2), & 0 \\ 0, & (|h_1|^2 + |h_2|^2) \end{bmatrix} = (|h_1|^2 + |h_2|^2)I
\]

Notes:

1. The form of the matrix \(\begin{bmatrix} h_1 & h_2^* \\ -h_2 & h_1^* \end{bmatrix} \) is unitary and this matrix is the linear algebraic representation of the quaternionic group. It is a non-commutative multiplicative group.
2. There are several other forms of the 2×2 matrices of similar natures, e.g.,

\[
\begin{bmatrix}
 h_1 & h_2 \\
 h_2 & -h_1^*
\end{bmatrix}, \quad \begin{bmatrix}
 -h_1 & h_2 \\
 H_2^* & h_1^*
\end{bmatrix}, \quad \begin{bmatrix}
 h_1 & h_2 \\
 -h_2^* & h_1^*
\end{bmatrix}
\]

etc...

Some of these form multiplicative groups, and others do not.

Now, let us use this property in (8.27)

\[
[\tilde{y}(k), \tilde{y}(k+1)] = \frac{1}{(|h_1|^2 + |h_2|^2)^{1/2}} [y(k), y^*(k+1)]
\begin{bmatrix}
 h_1^* & -h_2^* \\
 h_2 & h_1
\end{bmatrix}
\]

\[
\equiv (|h_1|^2 + |h_2|^2)^{1/2} [x_1 x_2^*] + \frac{1}{(|h_1|^2 + |h_2|^2)^{1/2}} [z(k), z^*(k+1)]
\begin{bmatrix}
 h_1^* & -h_2^* \\
 h_2 & h_1
\end{bmatrix}
\]

where (a) follows due to Claim 8.4.1.

Now, since

\[
\begin{bmatrix}
 h_1^* & -h_2^* \\
 h_2 & h_1
\end{bmatrix}
\]

is orthogonal, the noise after this transformation remains white, and because of the factor

\[
\frac{1}{(|h_1|^2 + |h_2|^2)^{1/2}},
\]

the transformation is unitary. Therefore the noise is statistically identical to the one before transformation. Hence we get

\[
[\tilde{y}(k), \tilde{y}(k+1)] = (|h_1|^2 + |h_2|^2)^{1/2} [x_1 x_2^*] + [\tilde{z}(k), \tilde{z}^*(k+1)]
\]

which gives,

\[
\tilde{y}(k) = (|h_1|^2 + |h_2|^2)^{1/2} x_1 + \tilde{z}(k)
\]

\[
\tilde{y}(k+1) = (|h_1|^2 + |h_2|^2)^{1/2} x_2^* + \tilde{z}(k+1)
\]

Hence, we can detect x_1 and x_2 independently and we get error probability behavior as

\[
P(x_1 \rightarrow x_1' | h) = Q \left(\frac{|h| d_{\text{min}}}{2 \sigma} \right)
\]

\[
P(x_2 \rightarrow x_2' | h) = Q \left(\frac{|h| d_{\text{min}}}{2 \sigma} \right)
\]

Therefore we get the average error probability at high SNR as,

\[
\bar{P}_e(x_1 \rightarrow x_1') = \frac{1}{SNR^2}
\]

\[
\bar{P}_e(x_2 \rightarrow x_2') = \frac{1}{SNR^2}
\]

Therefore, by using this coding scheme at the transmitter, one has utilized maximally two diversity paths which was available.

Notes:

1. The coding scheme achieved similar performance as receive diversity i.e. getting error behavior at high SNR as $P_e = \frac{1}{SNR^2}$, yielding a diversity order of 2.

2. The decoding scheme shown is actually a maximal likelihood decoder and therefore obtains optimal performance.
3. The decoupling of two simultaneously transmitted streams is attained in a simple manner because of the orthogonality of the matrix \[
\begin{bmatrix}
h_1 & h_2^* \\
-h_2 & h_1^*
\end{bmatrix}.
\]

4. In general if \(x_1\) and \(x_2\) each had a constellation size of \(|S|\), the search space for a maximum likelihood decoder would have been \(|S|^2\). Due to the coding scheme one is able to decouple the problem into 2 problems of size \(|S|\) each, \(i.e.,\) linear decoding complexity of \(O(|S|)\).

5. The transmission rate is still \(\log |S|\), since we transmit \(|S|^2\) information symbols in 2 time instant, \(i.e.,\)
\[
R = \frac{1}{2} \log |S|^2 = \log |S|.
\]

6. This particularly elegant coding scheme has now become part of next generation wireless network proposals.

7. There are several general principles that can be gleaned from this example. The idea of coding information across multiple transmit antennas (\(i.e.,\) \"space\") and over multiple transmission instance is called \"space-time\" coding. There is a deeper theory and a set of design criteria that can be derived for these class of codes which is outside the scope of this chapter.

8.5 Tools for reliable wireless communication

The main idea we learnt in this chapter was that the error probability behavior of fading channels differ significantly from that of time-invariant channels. This is due to the random fluctuations of the channel gain and this led to \(P_e \approx \frac{1}{SNR}\). In order to combat this, we needed to use multiple independent instantiations of the channel and code across them. These diversity techniques form the basis tools for increasing reliability over wireless channels. In all the techniques we examined, we obtained an error probability behavior of \(P_e \approx \frac{1}{SNR^D}\), by using \(D\) instantiations of randomness. This gives a significant improvement in error probability.

We saw three main diversity mechanisms.

Time diversity: Here we code over time periods longer than the coherence time of the channel and obtained the \(D\) independent channels by this mechanism. Using a single repetition code we could get a diversity order of \(D\). However, we can improve the transmission rate at the cost of diversity order.

Frequency diversity: Here weexploited the \"independent\" variations in the random frequency response of the ISI channel. Both equalization and multicarrier techniques yielded the maximal diversity order of \((\nu + 1)\), where \(\nu\) was the order of the WSSUS channel.

Spatial Diversity: We code across multiple transmit antennas and/or receive with multiple antennas.

We saw a simple example of coded transmit diversity a.k.a. \textit{space time codes}.

Using diversity is the primary tool for combating channel fading. Many modern techniques combine all three diversity mechanisms for robust performance.

Appendices for Chapter 8

8.A Exact Calculations of (8.4)

First let us examine the probability distribution of \(|h|\).
8.B. NON-COHERENT DETECTION: FAST TIME VARIATION

Since,

\[|h|^2 = |\text{Re}(h)|^2 + |\text{Im}(h)|^2 \]

where \(\text{Re}(h) \sim \mathcal{N}(0, \frac{1}{2}) \) and \(\text{Im}(h) \sim \mathcal{N}(0, \frac{1}{2}) \) as \(h \) is a circular symmetric Complex Gaussian random variable. It can be therefore seen\(^2\) that if \(u = |h|^2 \),

\[f_V(u) = e^{-u} \quad (8.28) \]

Now, using (8.28) in (8.4) we get

\[\bar{P}_c = \int_{u=0}^{\infty} e^{-u} Q(a \sqrt{u}) \, du \]

where we have defined \(a = \frac{4a}{2\sigma^2} \). Therefore we can write

\[\bar{P}_c = \int_{u=0}^{\infty} e^{-u} \left[\int_{v=0}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{v^2}{2}} \, dv \right] \, du = \int_{u=0}^{\infty} \frac{1}{\sqrt{2\pi}} \left[\int_{v=0}^{\infty} e^{-\frac{v^2}{2}} \, du \right] \, dv \]

\[= \int_{u=0}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{u^2}{2}} (1 - e^{-\frac{u^2}{2}}) \, dv = \frac{1}{2} - \int_{v=0}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-v^2[\frac{1}{2} + \frac{1}{\sigma^2}]} \, dv \]

\[= \frac{1}{2} - \gamma \int_{v=0}^{\infty} \frac{1}{\sqrt{2\pi} \gamma} e^{-\frac{v^2}{2 \gamma}} \, dv = \frac{1}{2} [1 - \gamma] \]

where \(\gamma^2 = \frac{1}{1 + \frac{1}{\sigma^2}} \).

Hence

\[\bar{P}_c = \frac{1}{2} \left[1 - \frac{1}{\sqrt{1 + (\frac{2}{\sigma^2})}} \right] = \frac{1}{2} \left[1 - \frac{1}{\sqrt{1 + \frac{2\sigma^2}{\sigma_{\text{min}}^2}}} \right]. \quad (8.29) \]

8.B Non-coherent detection: fast time variation

In order to illustrate rapid time variation we consider extremely small block sizes, \textit{i.e.,} blocks of size one, which yields

\[y(k) = h(k) x(k) + z(k) \]

where \(\{h(k)\} \) are Gaussian with a given covariance. If we want to do maximum-likelihood detection, we form, \(P_{Y|X}(y|x) \). Note that here \(h(k) \) is also a source of randomness and hence for each \(k \) we have,

\[P_{Y|X}(y|x) \sim \mathcal{CN}(0, \{E[|h|^2]\} |x|^2 + \sigma^2) \quad (8.30) \]

Therefore as one would expect from this relationship the maximum likelihood criterion takes a form that is substantially different from what we were used to in Section 8.1.1.

Let us form the detector for a sequence of transmitted symbols. Furthermore, let us assume that for the short interval of the transmission the channel has a given statistical variation. With no loss in generality\(^2\) since \(\text{Re}(h) \) and \(\text{Im}(h) \) are i.i.d. real Gaussian random variables, \(|\text{Re}(h)|^2 \) and \(|\text{Im}(h)|^2 \) are also i.i.d. with density function \(P_V(v) = \frac{1}{\sqrt{2\pi}} e^{-\frac{v^2}{2\sigma^2}} \), where \(v = \text{Re}(h) \) or \(v = \text{Im}(h) \), and \(\sigma^2 = E[|\text{Re}(h)|^2] = E[|\text{Im}(h)|^2] = \frac{1}{2} \). Hence the characteristic function of \(|\text{Re}(h)|^2 \) is \(E[e^{j\omega |\text{Re}(h)|^2}] = \frac{1}{(1 - j2\omega \sigma^2)^2} \). This allows us to write the characteristic function of \(|\text{Re}(h)|^2 + |\text{Im}(h)|^2 \) as \(\frac{1}{(1 - j2\omega \sigma^2)^2} \), and hence the inverse Fourier transform of this yields (8.28).
let us assume that we transmit a block of \(K \) symbols from time 0 to \(K - 1 \)

\[
y = \begin{bmatrix} y(K - 1) \\ \vdots \\ y(0) \end{bmatrix} = \begin{bmatrix} h(K - 1) & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & h(0) \end{bmatrix} \begin{bmatrix} x(K - 1) \\ \vdots \\ x(0) \end{bmatrix} + \begin{bmatrix} z(K - 1) \\ \vdots \\ z(0) \end{bmatrix}
\]

\[
\begin{bmatrix} x(K - 1) \\ \vdots \\ x(0) \end{bmatrix} = \begin{bmatrix} h(K - 1) \\ \vdots \\ h(0) \end{bmatrix} \begin{bmatrix} y(K - 1) \\ \vdots \\ y(0) \end{bmatrix} + \begin{bmatrix} z(K - 1) \\ \vdots \\ z(0) \end{bmatrix}
\]

(8.31)

For a given \(\mathcal{X} \), using the same idea as in (8.30), we get for (8.31)

\[
y \sim \mathcal{C}\mathcal{N}(0, \mathcal{X}[\mathbf{h}\mathbf{h}^*] + \sigma^2_2 \mathbf{I}_K)
\]

where \(\mathbf{R}_h = \mathbb{E}[\mathbf{h}\mathbf{h}^*] \) depends on the time-correlation of the (fading) channel random process. For the maximum likelihood rule, we have

\[
P_Y(X|y|x) = \frac{1}{\pi |\mathcal{X}[\mathbf{R}_h\mathcal{X}^* + \sigma^2_2 \mathbf{I}_K]|} \exp \left(-y^*[\mathcal{X}[\mathbf{R}_h\mathcal{X}^* + \sigma^2_2 \mathbf{I}_K]^{-1}y \right)
\]

Therefore the log-likelihood is,

\[
\log P_Y(X|y|x) = -\log \pi - |\mathcal{X}[\mathbf{R}_h\mathcal{X}^* + \sigma^2_2 \mathbf{I}_K]| - y^*[\mathcal{X}[\mathbf{R}_h\mathcal{X}^* + \sigma^2_2 \mathbf{I}_K]^{-1}y
\]

Consider the important special case when \(|x(i)|^2 = E_x \), i.e. we have a constant modulus constellation (e.g., PSK).

Hence if \(|x(i)|^2 = E_x \) then \(\mathcal{X}\mathcal{X}^* = E_x \mathbf{I}_K \), hence

\[
|\mathcal{X}[\mathbf{R}_h\mathcal{X}^* + \sigma^2_2 \mathbf{I}_K]| = |\mathcal{X}[\mathbf{R}_h + \frac{\sigma^2_2}{E_x} \mathbf{I}_K]\mathcal{X}^*|
\]

\[
= |\mathcal{X}(\mathbf{R}_h + \frac{\sigma^2_2}{E_x} \mathbf{I}_K)\mathcal{X}^*|\]

\[
= \left| \mathbf{R}_h + \frac{\sigma^2_2}{E_x} \mathbf{I}_K \right| E_x
\]

(a) follows because \(|x(i)|^2 = E_x \) \(\forall i \).

Hence we get the maximum likelihood rule as,

\[
\hat{x} = \arg \max_x \left\{-y^* \left[\sigma^2_2 \mathbf{I}_K + \mathcal{X}[\mathbf{R}_h\mathcal{X}^*] \right]^{-1}y \right\}
\]

(8.32)

Now by the matrix inversion lemma, Lemma 5.7.1 we have

\[
\left[\sigma^2_2 \mathbf{I}_K + \mathcal{X}[\mathbf{R}_h\mathcal{X}^*] \right]^{-1} = \frac{1}{\sigma^2_2} \mathbf{I}_K - \frac{1}{\sigma^2_2} \mathcal{X} \left(\frac{1}{\sigma^2_2} \mathbf{I}_K + \frac{\mathcal{X}\mathcal{X}^*}{\sigma^2_2} \right)^{-1} \frac{1}{\sigma^2_2} \mathcal{X}^*
\]

Therefore using this in (8.32) we get

\[
\hat{x} = \arg \max_x \left\{ y^* \mathcal{X} \left[\frac{1}{\sigma^2_2} \mathbf{I}_K + \frac{\mathcal{X}\mathcal{X}^*}{\sigma^2_2} \right]^{-1} \mathcal{X}^* y \right\}
\]

\[
= \arg \max_x \left\{ y^* \mathcal{X} \left[\frac{1}{\sigma^2_2} \mathbf{I}_K + \frac{E_x}{\sigma^2_2} \mathbf{I}_K \right]^{-1} \mathcal{X}^* y \right\}
\]

(8.33)
8.C Error probability for non-coherent detector

This projects the received signal onto the space spanned by the codeword and a weighted norm is taken. This idea of projecting the received signal onto the space spanned by the codewords is actually a useful and important idea for non-coherent detection.

We can recover from this the result in Section 8.1.2. For the block time-invariant model considered there we have,

\[R_h = 11^t \]

where \(1^t = [1, \ldots, 1]\). Then, the detection criterion given in (8.32) becomes,

\[\hat{x} = \arg \max_x \left\{ -y^* \left[\sigma_x^2 I_K + \lambda^* \lambda^t \right]^{-1} y \right\} \]

(8.34)

Now,

\[\lambda^t = \begin{bmatrix} x(N-1) \\ \vdots \\ x(0) \end{bmatrix} = x. \]

Therefore using this in (8.34) we have

\[\left[\sigma_x^2 I_K + xx^* \right]^{-1} = \frac{1}{\sigma_x^2} I_K - \frac{1}{\sigma_x^2} x \left(1 + \frac{x^* x}{\sigma_x^2} \right)^{-1} \frac{1}{\sigma_x^2} x^*. \]

Hence the criterion becomes,

\[\hat{x} = \arg \max_x \left\{ \frac{y^* xx^* y}{\left(1 + \frac{x^* x}{\sigma_x^2} \right) (\sigma_x^2)^2} \right\}. \]

If \(|x(i)|^2 = \mathcal{E}_x\) we get \(x^* x = N \mathcal{E}_x\), therefore we have

\[\hat{x} = \arg \max_x \left\{ \frac{|x^* y|^2}{\left(\sigma_x^2 \right)^2 \left(1 + \frac{x^* x}{\sigma_x^2} \right)} \right\} = \arg \max_x |x^* y|^2, \]

which is the same criterion derived in Section 8.1.2.

8.C Error probability for non-coherent detector

Let us consider the error probability for the non-coherent detector given in 8.1.2. For such a detector, if \(x\) was sent we detect it to be \(\hat{x} \neq x\) if

\[\mathbb{P}\{x \rightarrow \hat{x}\} = \mathbb{P}\left\{ \frac{1}{(\sigma_x^2)^2} |x^* y|^2 < \frac{1}{(\sigma_x^2)^2} |\hat{x}^* y|^2 \right\} \]

\[= \mathbb{P}\left\{ \frac{1}{(\sigma_x^2)^2} y^* (\hat{x} \hat{x}^* - xx^*) y > 0 \right\} \]

(8.35)

Let us define

\[Q = \frac{1}{(\sigma_x^2)^2} (\hat{x} \hat{x}^* - xx^*) \]

and notice that since \(x\) was transmitted

\[y \sim \mathcal{C} \mathcal{N}(0, xx^* + \sigma_x^2 I_K). \]

So we have the error probability of a Gaussian quadratic form where

\[\mathbb{P}\{x \rightarrow \hat{x}\} = \mathbb{P}\{y^* Q y > 0\}. \]

and \(Q = Q^*\), but need not be positive-semidefinite, i.e., could have negative eigenvalues.
Lemma 8.C.1. If \(y \sim \mathcal{CN}(0, M) \) and \(Q = Q^* \), then
\[
P \{ y^* Q y > 0 \} = \sum_{\gamma_i < 0} \prod_{n=1}^K \left(\frac{1}{1 - j\omega \gamma_i} \right)
\]
where \(M \in \mathbb{R}^{K \times K} \) and \(\{\gamma_n\} \) are the eigenvalues of \(MQ \).

Proof: The characteristic function of \(y^* Q y \) is given by
\[
\Phi(\omega) = \mathbb{E} \{ \exp(j\omega y^* Q y) \} = \prod_{n=1}^K \frac{1}{1 - j\omega \gamma_n}
\]
where \(\{\gamma_n\} \) are the eigenvalues of the matrix \(MQ \).
Therefore, the error probability is
\[
P \{ x \rightarrow \bar{x} \} = P \{ y^* Q y > 0 \} = \int_0^\infty \left[\frac{1}{2\pi} \int_{-\infty}^\infty \Phi(\omega) e^{-j\omega u} d\omega \right] du
\]
\[
= \frac{1}{2\pi} \int_{-\infty}^\infty \Phi(\omega) \left[\int_0^\infty e^{-j\omega u} du \right] d\omega
\]
\[
= \frac{1}{2\pi} \int_{-\infty}^\infty \Phi(\omega) \left(\pi \delta(\omega) - \frac{1}{j\omega} \right) d\omega
\]
\[
= \frac{1}{2} \int_{-\infty}^\infty \Phi(\omega) \delta(\omega) d\omega - \frac{1}{2\pi} \int_{-\infty}^\infty \frac{1}{j\omega} \prod_{n=1}^K \left(\frac{1}{1 - j\omega \gamma_n} \right) d\omega
\]
In order to evaluate this integral we use the residue theorem which is stated for convenience below.

Theorem 8.C.1. (Residue theorem) Let \(f(z) \) be a function which is analytic inside a simple closed path \(\mathcal{C} \) and on \(\mathcal{C} \), except for a finitely many singular points \(a_1, \ldots, a_m \) inside \(\mathcal{C} \). Then
\[
\int_{\mathcal{C}} f(z) dz = 2\pi j \sum_{i=1}^m \text{Res} \{ f(z) \}_{z=a_i}
\]
where for a simple pole \(a_i \) of \(f(z) \), \(\text{Res} \{ f(z) \}_{z=a_i} = (z - a_i) f(z) \big|_{z=a_i} \).

In order to use this result we use the integral path on the upper half of the \(\mathbb{C} \) plane in (8.37). Notice that,
\[
\frac{1}{1 - j\omega \gamma_n} = \frac{j\gamma_n^{-1}}{j\gamma_n^{-1} + \omega}
\]
Therefore using this and the residue theorem 8.C.1 we get,
\[
\frac{1}{2} - \frac{1}{2\pi} \int_{-\infty}^\infty \frac{1}{j\omega} \prod_{n=1}^K \left(\frac{1}{1 - j\omega \gamma_n} \right) d\omega
= \frac{1}{2} - \left[\frac{1}{2} \sum_{\gamma_i < 0} \prod_{n=1}^K \left(\frac{1}{1 - \frac{j\omega}{\gamma_n}} \right) \right]
\]
Therefore, we get the stated result,
\[
P \{ x \rightarrow \bar{x} \} = \sum_{\gamma_i < 0} \prod_{n=1}^K \left(\frac{1}{1 - \frac{\omega}{\gamma_n}} \right).
\]
Let $u_1 = \frac{1}{\sigma_z^2} \bar{x}^* y$, $u_2 = \frac{1}{\sigma_z^2} \bar{x}^* y$. Clearly, u_1 and u_2 are scalar complex Gaussian random variables.

\[
\mathbb{E}[u_1]^2 = \frac{1}{(\sigma_z^2)^2} \bar{x}^* [\sigma_z^2 I + \bar{x} \bar{x}^*] \bar{x} = K \rho + \frac{1}{(\sigma_z^2)^2} |\bar{x}^* x|^2 = K \rho + |\rho K \beta|^2
\]

\[
\mathbb{E}[u_2]^2 = \frac{1}{(\sigma_z^2)^2} \left\{ K \mathbb{E}_x \sigma_z^2 + (K \mathbb{E}_z)^2 \right\} = K \rho [1 + K \rho]
\]

\[
\mathbb{E}[u_1 u_2] = \frac{1}{(\sigma_z^2)^2} \bar{x}^* [\sigma_z^2 I + \bar{x} \bar{x}^*] \bar{x} = K \rho \beta + K \rho \beta K \rho = (K \rho \beta) [1 + \rho K]
\]

where we have defined $\bar{x}^* x = \mathbb{E}_x \beta$ and $\rho = \frac{\mathbb{E}_z}{\sigma_z^2}$. Using this in (8.35) we get,

\[
\mathbb{P}\{ x \rightarrow \bar{x} \} = \mathbb{P}\{ |u_1|^2 - |u_2|^2 > 0 \}
\]

\[
= \mathbb{P}\left\{ [u_1^1, u_2^1] \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} > 0 \right\}.
\]

Now let us use this in Lemma 8.C.1, we get

\[
M = \begin{bmatrix} K \rho (1 + K \rho |\beta|^2), & (K \rho \beta) [1 + \rho K] \\ (K \rho \beta^2) [1 + \rho K], & K \rho [1 + K \rho] \end{bmatrix}
\]

Also we have

\[
Q = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}.
\]

Clearly, the conditions of Lemma 8.C.1 are satisfied and so we need the eigenvalues of MQ. Now we have,

\[
MQ = \begin{bmatrix} K \rho (1 + K \rho |\beta|^2), & -(K \rho \beta) [1 + \rho K] \\ (K \rho \beta^2) [1 + \rho K], & -K \rho [1 + K \rho] \end{bmatrix}
\]

\[
= K \rho [1 + \rho K] \begin{bmatrix} \frac{1 + K \rho |\beta|^2}{1 + \rho K} & -\beta \\ \beta^2 & -1 \end{bmatrix}
\]

Therefore the eigenvalues of MQ are,

\[
\gamma_1 = K \rho [1 + \rho K] \lambda_1
\]

\[
\gamma_2 = K \rho [1 + \rho K] \lambda_2
\]

where λ_1, λ_2 are the eigenvalues of

\[
\begin{bmatrix} \frac{1 + K \rho |\beta|^2}{1 + \rho K}, & -\beta \\ \beta^2 & -1 \end{bmatrix}
\]

and hence for $\Gamma = \frac{1 + K \rho |\beta|^2}{1 + \rho K}$, we have

\[
\lambda_1 = \frac{1}{2} \left\{ (\Gamma - 1) - \sqrt{(\Gamma - 1)^2 + 4(\Gamma - |\beta|^2)} \right\}
\]

\[
\lambda_2 = \frac{1}{2} \left\{ (\Gamma - 1) + \sqrt{(\Gamma - 1)^2 + 4(\Gamma - |\beta|^2)} \right\}
\]
and observing that $1 - \Gamma = \frac{K e(1 - |\beta|^2)}{1 + K \rho}$ and $\Gamma - |\beta|^2 = \frac{1 - |\beta|^2}{1 + K \rho}$, we get,

$$
\lambda_1 = \frac{1}{2(1 + K \rho)} \left\{ -K \rho(1 - |\beta|^2) - \sqrt{\left(K \rho(1 - |\beta|^2)\right)^2 + 4(1 - |\beta|^2)(1 + K \rho)} \right\} < 0
$$

$$
\lambda_2 = \frac{1}{2(1 + K \rho)} \left\{ -K \rho(1 - |\beta|^2) + \sqrt{\left(K \rho(1 - |\beta|^2)\right)^2 + 4(1 - |\beta|^2)(1 + K \rho)} \right\} > 0
$$

Hence we have,

$$
\gamma_1 = \frac{(K \rho)^2(1 - |\beta|^2)}{2} \left\{ -1 - \sqrt{1 + \frac{4(1 + K \rho)}{(K \rho)^2(1 - |\beta|^2)}} \right\} < 0
$$

$$
\gamma_2 = \frac{(K \rho)^2(1 - |\beta|^2)}{2} \left\{ -1 + \sqrt{1 + \frac{4(1 + K \rho)}{(K \rho)^2(1 - |\beta|^2)}} \right\} > 0
$$

Using Lemma 8.C.1, we get

$$
P\{\hat{x} \rightarrow \hat{x}\} = \frac{1}{1 - \frac{\gamma_1}{\gamma_2}} = \frac{-\gamma_1}{\gamma_2 - \gamma_1}
$$

Hence we get at high SNR,

$$
P\{\hat{x} \rightarrow \hat{x}\} = \frac{1}{SNR}
$$

Therefore the high SNR behavior of the error probability is like $\frac{1}{SNR}$, which is like the coherent case.
Chapter 9

Multi-user communication

The wireless propagation medium is (almost by definition!) shared by many simultaneously transmitting users. For example one has seen that several people use their mobile phones simultaneously in a small geographical area. Therefore, these users’ signals would overlap and interfere with one another. In this chapter we study basic communication topologies which arise in wireless networks. We study how multiple users can share and access common resources. After studying these in Section 9.1, we focus our attention on multiple access channels in Section 9.3 and 9.4. In Section 9.2 we will study different access techniques for multiuser channels. In Section 9.3, we set up the model and sufficient statistics for the multiple access problem. In Section 9.4 we study multi-user detectors that naturally generalize some of the ideas from Chapter 4 and 5.

9.1 Communication topologies

In order to build a multiuser wireless network the first question is how to share the common “channel” resources among the different users.

To address this question let us first examine the various configurations that can arise in multiuser networks. There are two categories of configurations. One is hierarchical where there is a central access point and users communicate to the access point. The other configuration could be where the users are allowed to communicate directly to one another perhaps using other users as relays. Such configurations are called ad hoc networks and we briefly talk about them in Section 9.1.2.

9.1.1 Hierarchical networks

In most current wireless systems there are two main hierarchical configurations that are used.

Broadcast Base-station to user (one-to-many) broadcast or downlink communication.

Multiple access Users to base-station (many-to-one) multiple access or uplink communication.

These configuration are shown in figures 9.1 and 9.2. In the “downlink” broadcast communication, the (server) base-station communicates to the users. This can be the case where the base-station sends information like web-downloads or voice information to the mobile user.

The “uplink” multiple access communication is exactly the reverse of this, *i.e.*, many users send information (to be transferred) to the base-station (server). This could occur when the users send a request, or upload data or are sending a voice message/conversation to the base-station intending it to be forwarded to its final destination.
CHAPTER 9. MULTI-USER COMMUNICATION

Figure 9.1: Base-station to user (one-to-many) broadcast/downlink communication.

Figure 9.2: Users to base-station (many-to-one) multiple access/uplink communication.

In both cases, the users receive/transmit signals “simultaneously”. Therefore, in order to help distinguish the signals from the different users, typically the channel resources (time, frequency) are divided among the users. This idea leads to the main “channel access” techniques used in current systems. These access schemes are called Time-Division Multiple Access (TDMA), Frequency-Division Multiple Access (FDMA) and Code-division Multiple Access (CDMA).

9.1.2 Ad hoc wireless networks

In contrast to hierarchical networks where we have a base-station serving a cluster of mobiles (see Figures 9.1 and 9.2) another configuration is where there is no central infrastructure. These networks variously called ad hoc networks, self organized networks, mesh networks etc. They are primarily used in military applications where there was a need to have an architecture without clear vulnerabilities. In an ad hoc network, the mobiles can form any configuration depending on the communication conditions and needs. The most distinct feature of such network is the use of relays to transmit information from one node to another. This is illustrated in figure 9.3.

For example, if source node S wants to transmit to destination T it can transmit through several alternate routes depending on the transmission conditions. For example in Figure 9.3, route 1, relays the information through relay node A, and route 2 sends it through nodes B and C.
The advantage of ad hoc networks is that they are reconfigurable, i.e., if any nodes fail or the communication conditions (e.g., fading) changes, then the transmission routes can also change. They can also take advantage of varying communication needs, for example the node S might be the only one who needs to send information and therefore the network resources can be manoeuvred for this purpose. This flexibility makes such an architecture attractive. However, this functionality also comes at a cost of overhead in setting up routes, locating nodes and doing so in a distributed manner since there is no "central authority". Therefore, this configuration/architecture is yet to be implemented in commercial systems through the 802.11 wireless LAN standard does have this as an option (though rarely used!). Ad hoc networks also have some interesting capacity scaling properties, but this is a topic beyond the scope of this chapter.

9.2 Access techniques

Access techniques refer to methods by which users establish communication to each other through the shared medium. This can be studied both in the context of hierarchical networks as well as ad hoc networks. We will only discuss deterministic access techniques here. However, there are random access techniques which utilize the resources adaptively depending on the needs.

9.2.1 Time Division Multiple Access (TDMA)

In this, the transmission time is divided into slots and each user is assigned a distinct time slot therefore getting exclusive use of the channel during this period and there is no interference from other users in the same “cell”. This is shown in figure 9.4

![Time division Multiple Access](image)

All users must have a synchronized clock to know exactly when their transmission begins. Since users are geographically separated, they also need to account for (small) propagation delays that might occur. Typically the time-periods are equal in size and therefore the resources are equally divided among the
users. Some recent proposals use unequal slots or assign more than one slot to a user in order to give differentiated services to the users. TDMA is implemented in several current wireless systems, both in the USA, Europe and in Japan. These systems are used for mobile telephony are called IS-136, GSM etc.

9.2.2 Frequency Division Multiple Access (FDMA)

This is the frequency dual of TDMA, where instead of time, frequency is broken up into slots and users are assigned exclusive use of the small piece of the frequency spectrum. Again, this is used for both uplink and downlink. Most commercial systems use both TDMA and FDMA to divide the resources. The frequency is divided and then each part could be further divided using TDMA. A more modern method for FDMA involves use of OFDM which we have seen in Section 6.2. In this, the users transmit on a wide bandwidth and they are assigned “carriers” or “tones” of the OFDM scheme. They transmit (or listen) only on those tones and these tones can also be dynamically allocated. The advantage of OFDM is the flexibility in assignment and the ability to dynamically change it as well as data rates on the tones depending on the channel condition of the different users.

9.2.3 Code Division Multiple Access (CDMA)

CDMA is philosophically slightly different from TDMA and FDMA in that the users do interfere with one another since they are allowed to transmit simultaneously. The idea is to assign a “spreading code” to each user so as to minimize the interference. There are two flavors of CDMA - frequency hopped CDMA and direct-sequence CDMA. Both arise from “spread-spectrum” techniques which transmit over a wide bandwidth and only transmit at a rate much smaller than the transmission bandwidth could have allowed.

- **Frequency-hopped spread spectrum:** Here we can imagine a combination of FDMA and TDMA, where a random assignment of frequency and time slots is given to each user. This is illustrated in Figure 9.5 in a time frequency grid.

![Figure 9.5: Frequency hopped spread Spectrum.](image)

The users’ “hopping pattern” are basically the frequency bin they transmit in at a certain time. Therefore, if they are assigned random hopping patterns, they could in principle “collide” i.e. get assigned same transmission slot. Also note that they transmit over much larger bandwidth overall, than their data rate requires, i.e., they use many more degrees of freedom than their transmission needs. This gives it the name spread-spectrum, since the signals spread over a large bandwidth. This spreading over a wide bandwidth is in order to accommodate other simultaneously transmitting users. This form of frequency-hopping is also used in some modern TDMA/FDMA systems in order
9.2. ACCESS TECHNIQUES

to get frequency diversity as well as reduce interference to other geographical cells using the same frequency spectrum. For example GSM (the European cellular standard) uses such a technique.

- **Direct-sequence spread spectrum:** In this system, unlike in frequency-hopped spread spectrum, the users intentionally interfere with one another. The basic structure of a direct sequence spread spectrum system is shown in Figure 9.6. The information to be transmitted is modulated by a pseudo-noise sequence and transmitted over a wide bandwidth.

\[
\begin{bmatrix}
C_k \\
S_k \\
X_k
\end{bmatrix}
\]

Figure 9.6: Direct sequence spread Spectrum.

Typically, the symbol or information sequence is at a much lower rate than the variation in the modulating pseudo-noise sequence. Therefore we obtain

\[
x_k = c_k s_k \quad k = 0, \ldots, L - 1.
\]

i.e., a frame of \(L \) symbols is generated for every information symbol time creating a spreading of the information symbol over \(L \) times its original bandwidth.

Therefore for a particular block one gets the transmitted symbols (see Figure 9.7)

\[
\begin{bmatrix}
x_0^{(b)} \\
\vdots \\
x_{L-1}^{(b)}
\end{bmatrix}
= \begin{bmatrix}
c_0^{(b)} \\
\vdots \\
c_{L-1}^{(b)}
\end{bmatrix}
\begin{bmatrix}
s_0^{(b)} \\
\vdots \\
s_{L-1}^{(b)}
\end{bmatrix}
\]

(9.1)

This is transmitted at the same time-frame as the original signal, i.e., the bandwidth is \(L \) times the bandwidth of the information sequence \(\{S^{(b)}\} \).

The “spreading code” of the pseudo-noise sequence \(\{c_k^{(b)}\} \) could be the same for every block, i.e., \(c_k^{(b)} = c_k^{(b+1)} \), \(k = 0, \ldots, L - 1 \) and this is called “short codes”. Or they could vary from block to block and this called “long codes”. The long codes are used in the Qualcomm IS-95 CDMA system which is used in several commercial mobile telephony systems. The transmission of the spread symbols over a shared channel is based on the supposition that the different users get distinct random spreading codes and therefore look like noise to one another. Another jargon used is that the pseudo-noise sequence occurs at a period of \(T_c \) known as “chip period” and this is chosen to be \(T/L \) where \(T \) is the period of the original symbol sequence. Therefore the new symbol period is \(T/L \) causing the bandwidth to become \(L \) times the

\[
\begin{bmatrix}
x_k^{(b)} = c_k^{(b)} s_k^{(b)}
\end{bmatrix}
\]

Figure 9.7: Frame format of DS-CDMA.
original bandwidth. The power per symbol transmitted is reduced by a factor of L and therefore reduce the interference to the other users. In a multiple access area broadcast configuration, by considering the other users as undesired noise-like interference, one can see that a simple single user receiver can be built. We will study more sophisticated receivers that take into account presence of multiple users. Note that, “spreading gain” refers to the length L of the spreading code.

9.3 Direct-sequence CDMA multiple access channels

We will focus on one hierarchical configuration - the many-to-one communication of the wireless “uplink” (see Figure 9.2). In the TDMA and FDMA access techniques, the users do not interfere with one another and therefore the detection techniques discussed in the first part of the class (for single-user communication) apply directly and there is no need for further discussion. The problem becomes more interesting for direct sequence CDMA (or spread spectrum) where the users continuously interfere with one another.

9.3.1 DS-CDMA model

Recall from (9.1) that in Direct-sequence CDMA (DS-CDMA) each user u is assigned a distinct spreading code for each information block b, i.e., a code sequence

\[\{c_u^{(b)}(0), \ldots, c_u^{(b)}(L-1)\} , \]

for user u, in block b, of length L. Therefore each user modulates its information sequence $s_u^{(b)}$ through its spreading sequence to produce

\[x_u^{(b)}(l) = c_u^{(b)}(l)s_u^{(b)} , \quad l = 0, \ldots, L-1 \]

\[x_u^{(b)} = \begin{bmatrix} x_u^{(b)}(0) \\ \vdots \\ x_u^{(b)}(L-1) \end{bmatrix} = \begin{bmatrix} c_u^{(b)}(0) \\ \vdots \\ c_u^{(b)}(L-1) \end{bmatrix} s_u^{(b)} \quad (9.2) \]

Given the multiple access configuration (see figure 9.2), each user u transmits to the (central) base-station.

Each user experiences its own fading channel $h_u^{(b)}(l), \quad l = 0, \ldots, L-1$. For simplicity we make the following assumptions.
Assumption # 1: All users are synchronized both at block and at chip level, i.e. their transmission frames coincide exactly.

Assumption # 2: The power of each user is adjusted such that the channel fading (or attenuation) is exactly compensated.

This assumption implies that we can consider a unit gain channel for each user. This can be accomplished by user “power control” where the users change their transmit power according to feedback given by the base-station. Such a mechanism is commonly used in commercial DS-CDMA systems to reduce the received power disparity among the users.

Assumption # 3: The delay spread in the channel is small in comparison to the symbol period T and therefore the channel does not give rise to intersymbol interference. This assumption is mainly for simplicity and can be easily taken care of with more sophisticated receivers. In order to illustrate the concepts we will not deal with this issue right now.

Under these assumptions we can write the received signal at the base-station as (see figure 9.2 and 9.8)

$$y^{(b)}(t) = \sum_{u=1}^{U} s_u^{(b)} \phi_u(t) + z^{(b)}(t), \quad t \in ((b-1)T, bT)$$

$$\phi_u^{(b)}(t) = \sum_{l=0}^{L-1} c_u^{(b)}(l) \psi(t - lT_c), \quad t \in ((b-1)T, bT)$$ (9.3)

where $z^{(b)}(t)$ is additive (Gaussian) receiver noise.

The basis expansion $\phi_u(t)$ for each user is in terms of a waveform at the “chip” level, i.e, $\psi(t)$ shifted at “chip” period T_c. The symbol period is $T = LT_c$, where L is the spreading gain. The waveform $\phi_u(t)$ serves as a signature waveform for user u.

9.3.2 Multiuser matched filter

The continuous time waveform equation (9.3) is the same type of relationship as we encountered in the single-user case. Therefore, the optimal detector for this can be found by considering this as a larger dimensional single-user problem, i.e. $s^{(b)} = [s_1^{(b)}, \ldots, s_U^{(b)}]$ as the input symbol expressed in the basis function $\phi^{(b)}(t) = [\phi_1^{(b)}(t), \ldots, \phi_U^{(b)}(t)]$. Then as shown in Section 4.2.1 we have seen that the optimum receiver is a bank of matched filters as shown in Figure 9.9.

Therefore we can write the output of the matched as,

$$y_1^{(b)} = \int_{(b-1)T}^{bT} y^{(b)}(t) \phi_1^{(b)*}(t) dt = \sum_{u=1}^{U} s_u^{(b)} \phi_u^{(b)} \phi_1^{(b)} > + \phi_1^{(b)} \phi_1^{(b)} >$$

$$\vdots$$

$$y_U^{(b)} = \int_{(b-1)T}^{bT} y^{(b)}(t) \phi_U^{(b)*}(t) dt = \sum_{u=1}^{U} s_u^{(b)} \phi_u^{(b)} \phi_U^{(b)} > + \phi_U^{(b)} \phi_U^{(b)} >$$

Hence, we see that

$$\boxed{y^{(b)} = \sum_{u=1}^{U} s_u^{(b)} \phi_u^{(b)} + z^{(b)}}$$
Set of sufficient statistics for \{s_1^{(b)}, ..., s_U^{(b)}\}

\[
y_1^{(b)} = \sum_{u=1}^{U} \rho_{u,1}^{(b)} + z_1^{(b)} \\
\vdots \\
y_U^{(b)} = \sum_{u=1}^{U} \rho_{u,U}^{(b)} + z_U^{(b)}
\]

where

\[
\rho_{u,t} = \langle \varphi_u^{(b)}, \varphi_1^{(b)} \rangle = \int \varphi_u^{(b)}(t) \varphi_1^{(b)*}(t) dt
\]

Note that as proved in Section 4.2.1, these form a set of sufficient statistics to detect the symbols \{s^{(b)}\} where \(s^{(b)} = [s_1^{(b)}, ..., s_U^{(b)}]\).

Hence for the received signal block \(t \in [(b-1)T, bT]\) we get

\[
y^{(b)} = \begin{bmatrix}
y_1^{(b)} \\
\vdots \\
y_U^{(b)}
\end{bmatrix} = \begin{bmatrix}
\rho_{1,1}^{(b)} & \cdots & \rho_{1,U}^{(b)} \\
\vdots & \ddots & \vdots \\
\rho_{U,1}^{(b)} & \cdots & \rho_{U,U}^{(b)}
\end{bmatrix}
\begin{bmatrix}
s_1^{(b)} \\
\vdots \\
s_U^{(b)}
\end{bmatrix} + \begin{bmatrix}
z_1^{(b)} \\
\vdots \\
z_U^{(b)}
\end{bmatrix}
\]

This can be compactly written as,

\[
y^{(b)} = R^{(b)}s^{(b)} + z^{(b)} \quad (9.4)
\]

This relationship is the starting point for multiuser detection. Note that \(\mathbb{E}[z^{(b)}z^{(b)*}] = R^{(b)}\sigma^2\), if \(z^{(b)}(t)\) is AWGN with variance \(\sigma^2\).

Notes:
1. The form and structure of the receiver is very similar to the single user case. The difference is that there are U information sequences to be recovered (one for every user). The conversion of the waveform to discrete-time through collecting sufficient statistics is identical to the simple-user case and we do not dwell on this issue further.

This is an important point that should not be neglected. As in the single-user presentation we start from the discrete-time version here as well.

2. In the relationship (9.4), we can add more details such as the channel attenuations $\{h_u(b)(d)\}$, delayed symbols causing inter-symbol interference as well as asynchronism between users. However, conceptually all these are handled in a similar manner and therefore for simplicity of exposition, these are ignored.

3. If short codes are employed, $c(b)$ would be independent of the block index b. However for long codes, this dependence exists and therefore the model in (9.4) applies to both cases.

4. The linear relationship in (9.4) is reminiscent of the single-user ISI channel relationship. Therefore one would expect schemes to detect $s(b)$ would also be similar. In fact all multiuser detections have an analogous ISI detector structure. Here we consider $[s_1(b), \ldots, s_U(b)]$ as a “sequence” of vector information symbols.

5. In the absence of ISI or asynchronism, we can do symbol-by-symbol detection, i.e., we detect $s(b) = [s_1(b), \ldots, s_U(b)]$ by considering only $y(b)$ and therefore for brevity of notation we will drop the index b.

6. The optimal detector would have complexity $O(|\mathcal{S}|^U)$ where \mathcal{S} is the size of the constellation (common for each user for simplicity). All the principles of optimal detection we developed for the single user case apply here by considering the symbol to be detected as $\begin{bmatrix}s_1(b) \\ \vdots \\ s_U(b)\end{bmatrix}$ and therefore we will not repeat it here (e.g. MAP, ML, etc.).

7. Where there is a large number of users U, the complexity grows exponentially in U and therefore we examine sub-optimal detectors. The reason is almost identical to the cause for looking at suboptimal equalizers of lower complexity for ISI channels. In fact the mathematical model given in (9.4) is identical in form to that in the ISI model we had developed for the finite block case.

9.4 Linear Multiuser Detection

Motivated by the last comment in Section 9.2.2, we examine sub-optimal linear detectors for the DS-CDMA multiple access channel. We assume that the symbols are i.i.d. and therefore we can do symbol-by-symbol detection rather than sequences detection.

Let us rewrite (9.4) here without the cumbersome additional block index b. This is because we know that "symbol-by-symbol" detection is optimal for this case and we develop linear "symbol-by-symbol" detections.

\[
y = Rs + z
\]
(9.5)

The model is similar to the finite block ISI model and we considered two types of linear detections of lower complexity, i.e., the zero-forcing and the MMSE receivers. In the multiuser case as well, the analogous detectors are called the “decorrelating receivers” and the “MMSE linear detector”.

CHAPTER 9. MULTI-USER COMMUNICATION

9.4.1 Decorrelating receiver

In analogy with the ISI case, we want to recover a particular symbol \(s_u \) from the interfering symbols in (9.5). Therefore in the zero-forcing case we invert the “channel”. In this case the role of the channel is taken by the cross-correlation matrix \(R \).

\[
R^{-1}y = s + R^{-1}z
\]

and then we can find the symbol for each user \(u \) as,

\[
\hat{s}_u = D[(R^{-1}y)_u]
\]

where \(D \) is a single-user detector for the given Gaussian noise (see also Figure 9.10).

\[
\begin{array}{c}
\text{y} \\
\downarrow \text{R}^{-1} \\
\downarrow \vdots \\
\downarrow \text{D} \\
\hat{s}_1 \\
\vdots \\
\downarrow \text{D} \\
\hat{s}_U \\
\end{array}
\]

Figure 9.10: Decorrelating multiuser detector

This receiver has the same attributes as the zero forcing detector equalizer, \(i.e. \), it is conceptually simple and ignores the background noise. Therefore it could cause noise enhancement especially if \(R \) is close to being singular. Therefore, we can take the next step of accounting for the presence of noise and develop the MMSE linear multiuser detector.

9.4.2 MMSE linear multiuser detector

We want to find a linear transformation \(M \) such that output is “close” to the information symbols, \(i.e. \), \(My \) is close to \(s \).

The meaning of “close” is make precise by considering the MMSE metric and therefore we pose the problem as

\[
\min_{M \in C_{U \times U}} \mathbb{E} [||s - My||^2]
\]

Now, by using orthogonality principle, we get

\[
\mathbb{E}[(s - My)y^*] = 0,
\]

This yields

\[
\begin{align*}
\mathbb{E}[sy^*] &= \mathbb{M}\mathbb{E}[yy^*] \\
M &= \mathbb{E}[sy^*] \mathbb{E}[yy^*]^{-1} \tag{9.6}
\end{align*}
\]

Now

\[
\begin{align*}
\mathbb{E}[sy^*] &= \mathbb{E}[ss^*] R^* = E_s IR^* \\
\mathbb{E}[yy^*] &= \mathbb{R}\mathbb{E}[ss^*] R^* + \mathbb{E}[zz^*] \\
&= E_z RR^* + \sigma^2 R \tag{9.7}
\end{align*}
\]
where we have assumed equal power E_s for each user and independent symbols, i.e. $\mathbb{E}[ss^*] = E_s I$. Moreover since the noise z is the output of the matched filter (see Figure 9.11) and equation (9.4), the noise has covariance $\sigma^2 R = \mathbb{E}[zz^*]$.

Using (9.7) in (9.6) we get,

$$M = E_s R^* (E_s R R^* + \sigma^2 R)^{-1}$$

Since R is a cross-correlation matrix of the signature waveforms, (9.4), it is symmetric, i.e., $R^* = R$ and therefore

$$M = \left(R + \frac{\sigma^2}{E_s} I \right)^{-1}$$

in the MMSE-optimal linear multiuser detector. The MMSE-linear multiuser detector is depicted in Figure 9.11.

Figure 9.11: Receiver for linear multiuser detection.

Therefore even if R is singular, M is well defined and does not cause noise enhancement. Moreover just as in the linear equalizers if we let $\sigma^2 / E_s \to 0$ the MMSE linear detector reduces to the decorrelating receiver.

Notes:

1. The main utility of multiuser detection is the resistance to the “near-far” problem. Here the users could have very disparate received power and the strong user could “drown” out the weak user. All the forms of multiuser detections do exhibit resistance to this problem. We have not explicitly exhibited them since we assumed equal received power for all users. However a simple modification to (9.4) would take care of this. If each user u has received power $A_u^{(b)}$, then

$$y^{(b)} = \begin{bmatrix} \rho_{1,1}^{(b)} & \cdots & \rho_{1,U}^{(b)} \\ \vdots & \ddots & \vdots \\ \rho_{U,1}^{(b)} & \cdots & \rho_{U,U}^{(b)} \end{bmatrix} R^{(b)} \begin{bmatrix} A_1 \\ \vdots \\ A_U \end{bmatrix} s^{(b)} + \begin{bmatrix} z_1^{(b)} \\ \vdots \\ z_U^{(b)} \end{bmatrix}$$

In more compact form,

$$y^{(b)} = R^{(b)} A^{(b)} s^{(b)} + z^{(b)}$$

Then the (zero-forcing) decorrelating receiver remains

$$A^{(b)} s^{(b)} = R^{-1} y^{(b)} = A^{(b)} s^{(b)} + R^{-1} z^{(b)}$$
and the MMSE linear multiuser detector becomes

\[M = E_S A R \left(R A^2 R + \sigma^2 R \right)^{-1} = A^{-1} \left(R + \frac{\sigma^2}{E_S} A^{-2} \right)^{-1} \]

where for simplicity \(A \) is assumed to be real. Therefore both receivers take into account the disparate received power and boost the weak user in order not to be drowned out by the stronger user.

2. One can also develop decision-driven multiuser detectors analogous to the DFE studied earlier. These are called successive cancellation receivers and have a rich history. Here the decisions of some users are used to eliminate them and help decoding the other users. A crucial issue here is the order in which the users are decoded. This topic is beyond the scope of this chapter.

3. Detector structures for asynchronous CDMA channels can be developed by realizing that asynchronism leads to inter-symbol interference between successive symbols of the different users. Almost the same principles can be applied to develop receivers for this case. Again the details are beyond the scope of this chapter.

9.5 Epilogue for multiuser wireless communications

We mainly studied one configuration (illustrated in figure 9.2) among several in wireless networks. The topic of multiuser wireless communication is still an active research topic and the more advanced topologies are beyond the scope of this class.

The broadcast (downlink) configuration (illustrated in figure 9.1) is of particular importance and we did not cover it in much detail in this class. Here the crucial difference from multiple access channels is that each user has access to only its received signal and therefore cannot do joint detection, i.e., cooperate with other users. This crucial difference makes the broadcast channel much more challenging and there are several open questions on this topic.

Finally ad hoc networks have become increasingly important in the recent past and have been a source of several important new developments. This topic is again outside the scope of this chapter and is still a developing research story.
Part IV

Connections to Information Theory
Chapter 10

Reliable transmission for ISI channels

A focus of this class has been transmission and reception over LTI channels. Even in the wireless transmission, the channels were considered to be block-time-invariant. Therefore, we examine the fundamental limits of transmission over such channels and compare the structures we studied to that which information theory predicts. In order to do that, we first study the capacity of ISI channels in Section 10.1. Then in Section 10.2 and 10.3 we study canonical properties of OFDM and the MMSE-DFE as information theoretic structures.

10.1 Capacity of ISI channels

The complete and rigorous derivation of the capacity of a (bandlimited) frequency selective (time-invariant) channel is beyond the scope and goal of this class. Here we give a heuristic development of the capacity expression with the intention to connect it to the transmission and receiver structures that we have studied in this class.

We represent the input $x(t)$ in terms of a Fourier series (where $x(t)$ is time-limited to $(-T/2, T/2)$ interval).

$$x(t) = \sum_{i=-\infty}^{+\infty} x_i \phi_i(t)$$

where $\{\phi_i\}$ are the Fourier series basis functions.

$$x(t) \ast h(t) = \int x(t) \phi_i(\tau) h(t - \tau) d\tau = \sum_{i} x_i \int \phi_i(\tau) h(t - \tau) d\tau$$
Let
\[\theta_i(t) = \int \phi_i(\tau) h(t - \tau) d\tau \]
Then
\[x(t) * h(t) = \sum_i x_i \theta_i(t) \]
\[y(t) = x(t) * h(t) + z(t) = \sum_i x_i \theta_i(t) + z(t) \]
When \(T \) becomes large, the Fourier series basis \(\{\phi_i\} \) tend towards the Fourier basis, which are the eigenbasis for linear time-invariant channels. Therefore we can write
\[\theta_i(t) \approx H \left(\frac{2\pi}{T} i \right) g_T(t) \]
where \(g_T(t) \) becomes the Dirac delta function when \(T \to \infty \). Similarly, we can expand the noise in the frequency domain and by doing so we obtain:
\[y_i \approx x_i H \left(\frac{2\pi}{T} i \right) + z_i \]
(10.1)
where \(\{y_i\} \) is the Fourier series coefficients of \(y(t) \) and \(\{z_i\} \) that of \(z(t) \). This is a very imprecise and heuristic development and a precise development is clearly out of the scope of this class. Since the relationship in (10.1) is output of parallel additive Gaussian noise channels, mutual information is,
\[I(y_i; \{x_i\}) = \frac{1}{2} \log \frac{|HR_x H^t + R_z|}{|R_z|} \leq \frac{1}{2} \sum_i \log \left(\left| H \left(\frac{2\pi}{T} i \right) \right|^2 \frac{E[|x_i|^2]}{E[|z_i|^2]} + 1 \right) \]
(10.2)
where \(|.| \) denotes the determinant and we have assumed that \(E[z_i z_j] = \mathbb{E} [|z_i|^2] \delta_{i-j} \), i.e. white Gaussian noise. Now, if we impose the input power constraint,
\[\frac{1}{T} \int_{-T/2}^{T/2} |x(t)|^2 dt \leq P \]
this translates (due to orthonormal expansion) to
\[\sum_i x_i^2 \leq PT \]
Now, the capacity therefore is maximization of the mutual information.
\[C_T = \max_{P, \sum x_i^2 \leq PT} \frac{1}{T} \sum_i \frac{1}{2} \log \left(\left| H \left(\frac{2\pi}{T} i \right) \right|^2 \frac{E[|x_i|^2]}{E[|z_i|^2]} + 1 \right) \]
Since we can choose independent \(\{x_i\} \), we can make the inequality in (10.2) into equality as we have done.
Now as \(T \to \infty \), \(\mathbb{E} [|x_i|^2] = S_T \left(\frac{2\pi}{T} i \right) \to S(f) \) the power spectral density of the input, and \(\frac{E[|z_i|^2]}{\sigma^2} \to \sigma^2 \). Also \(\frac{1}{T} \sum x_i^2 \to \int S(f) df \) and hence we get
\[\lim_{T \to \infty} C_T = \max_{S(f), \int S(f) df \leq P} \frac{1}{2} \int \log \left(1 + \frac{|H(f)|^2 S(f)}{\sigma^2} \right) df \]
This is the expression for capacity that we will work with. Next the goal is to find the optimal input power spectrum.

\[
C = \max_{S(f)} \frac{1}{2} \int \log \left(1 + \frac{|H(f)|^2}{\sigma^2} S(f) \right) df
\]

(10.3)

Now, to find the maximizing input spectrum \(S(f) \), we can do so by calculus of variations. However we can also do so by taking formal derivatives.

\[
\max \frac{1}{2} \int \log \left(1 + \frac{|H(f)|^2}{\sigma^2} S(f) \right) df
\]

such that

\[
\int S(f) df \leq P
\]

Since \(C \) increases with \(S(f) \), the last inequality can be replaced with equality. Let,

\[
\mathcal{I} = \frac{1}{2} \int \log \left(1 + \frac{|H(f)|^2}{\sigma^2} S(f) \right) df - \lambda \int S(f) df
\]

The Kuhn-Tucker conditions imply that

\[
\frac{\partial \mathcal{I}}{\partial S(f)} = 0 \quad \text{if} \ S(f) > 0
\]

\[
\frac{\partial \mathcal{I}}{\partial S(f)} < 0 \quad \text{if} \ S(f) = 0
\]

Hence for \(\{ f : S(f) > 0 \} \) we have

\[
\frac{1/2 |H(f)|^2 / \sigma^2}{1 + \frac{|H(f)|^2}{\sigma^2} S(f)} = \lambda
\]

or

\[
\frac{1}{2 \lambda} = \frac{\sigma^2}{|H(f)|^2} + S(f), \ f \in \{ f : S(f) > 0 \}
\]

Let \(\frac{1}{2 \lambda} = \nu \), thus we get the optimal input spectrum \(S^*(f) \) as

\[
S^*(f) = \nu - \frac{\sigma^2}{|H(f)|^2} f \in \{ f : S(f) > 0 \}
\]

Using the Kuhn-Tucker conditions, we can write

\[
S^*(f) = \left(\nu - \frac{\sigma^2}{|H(f)|^2} \right)^+ \forall f
\]

(10.4)

where \((x)^+ = \begin{cases} x & \text{if} \ x \geq 0 \\ 0 & \text{else} \end{cases} \)

We can find \(\nu \) by satisfying the constraint

\[
\int S^*(f) df = P, \ i.e. \ \int \left(\nu - \frac{\sigma^2}{|H(f)|^2} \right)^+ df = P
\]
Hence the capacity of the ISI channel is,

\[
C = \frac{1}{2} \int \log \left(1 + S(f) \frac{|H(f)|^2}{\sigma^2} \right) df
\]

\[
= \frac{1}{2} \int \frac{\log \left(\nu |H(f)|^2 \sigma^2 \right)}{\sigma^2} \cdot \nu df
\]

\[
= \frac{1}{2} \int \log \left(1 + \left(\frac{\nu |H(f)|^2}{\sigma^2} - 1 \right) \right) df
\]

The optimal input spectrum given in (10.4) has an interesting interpretation: Consider the channel in Figure 10.2.

Figure 10.2: Channel spectrum.

The inverted channel is illustrated in Figure 10.3. The relationship in (10.4) implies that \(S(f) > 0 \) only if \(\nu - \frac{\sigma^2 |H(f)|^2}{\sigma^2} > 0 \). Therefore in Figure 10.2, we have shown the regions where this occurs for a given \(\nu \). The corresponding input spectrum \(S(f) \) is shown in Figure 10.4. An interpretation of this is by thinking of pouring a volume \(P \) of water into the crevices of Figure 10.3. The “water” naturally occupies the lowest parts of the spectral valleys and when a total volume \(P \) of water is exhausted will have a level \(\nu \) in the spectral valleys. Therefore, the interpretation (given by Gallager) is called “water-filling” input spectrum for the optimal capacity achieving input distribution.

Notes:
10.2 Coded OFDM

Recall from Section 6.2 that in OFDM the cyclic prefix allowed us to relate the input (in the frequency domain) to the output (again in the frequency domain) as

\[Y(l) = P(l)X(l) + Z(l), \quad l = 0, \ldots, N - 1 \]

where \(\{P(l)\} \) was the frequency domain pulse response

\[P(l) = \sum_{n=0}^{\nu} p_n e^{-j \frac{2\pi}{N} ln}, \quad l = 0, \ldots, N - 1 \]
and \(\{ Z(l) \} \) was the noise (in the frequency domain) and \(\{ X(l) \} \) was the input in the frequency domain. This relationship can be illustrated as shown in Figure 10.5.

Now, one can concatenate an outer code along with the frequency domain input and code over a sequence of transmission blocks. That is, one can have codes \(\{ C_l \} \) for each of the \(N \) parallel channels and code such that the inputs come from the corresponding symbols from each block. This is illustrated in Figure 10.6 which shows the transformation from an uncoded OFDM system to a coded system.

If \(|M_l| = 2^{N_{c}R_l} \), where the rate on subchannel \(l \) is \(R_l \), the code \(C_l \) sends out \(N_{c} \) consecutive symbols which have been coded from the message from set \(M_l \). The symbols from each code form a sequence \(\{ X^{(k)}(l) \}_{k=0}^{N_{c}-1} \) of length \(N_{c} \) which is the length of the code. Each symbol is placed in the appropriate frequency sub-carrier of the OFDM. By doing this, for a large enough \(N_{c} \) information theory tells us that the \(R_l \) achievable is

\[
P(0) \quad \times \quad \quad Z(0) \quad \rightarrow \quad Y(0)
\]

\[
P(N - 1) \quad \times \quad \quad Z(N - 1) \quad \rightarrow \quad Y(N - 1)
\]

Figure 10.5: Parallel channels in OFDM.

\[
X^{(1)}(0) \quad \rightarrow \quad \cdots \quad \rightarrow \quad X^{(1)}(N-1)
\]

\[
X^{(2)}(0) \quad \rightarrow \quad \cdots \quad \rightarrow \quad X^{(2)}(N-1)
\]

\[
X^{(N_{c})}(0) \quad \rightarrow \quad \cdots \quad \rightarrow \quad X^{(N_{c})}(N-1)
\]

Block 1 \quad Block 2 \quad Block \: \: \: N_{c}

\[C_0 \quad \cdots \quad C_{N-1}\]

\[M_0 \quad \cdots \quad M_{N-1}\]

Message set

Message set

Figure 10.6: A coded OFDM transmissions scheme.
\[R_l = \frac{1}{2} \log \left(1 + Q_l \frac{|P(l)|^2}{\sigma^2} \right) \]

where \(P(l) \) is the frequency response of the channel and

\[Q_l = \lim_{N_c \to \infty} \frac{1}{N_c} \sum_{k=0}^{N_c-1} |X^{(k)}(l)|^2, \quad l = 0, \ldots, N - 1 \]

is the power assigned to subcarrier \(l \).

Therefore the overall rate achievable for OFDM is

\[R = \sum_{l=0}^{N-1} R_l = \frac{1}{2} \sum_{l=0}^{N-1} \log \left(1 + Q_l \frac{|P(l)|^2}{\sigma^2} \right) \] (10.5)

with the constraint that \(\sum_{l=0}^{N-1} Q_l \leq P_{\text{tot}} \) where \(P_{\text{tot}} \) is the transmit power. Note that as \(N \to \infty \), we get

\[R^* = \lim_{N \to \infty} R = \frac{1}{2} \int \log \left(1 + Q(f) \frac{|P(f)|^2}{\sigma^2} \right) df \]

with \(\int Q(f)df \leq P_{\text{tot}} \).

This looks strikingly similar to the ISI channel capacity expression discussed in (10.3). In fact with the appropriate power allocation we can make the two identical. This gives a hint that OFDM structure is canonical in terms of information theory.

10.2.1 Achievable rate for coded OFDM

Now, let us return to the realm of finite number of subcarriers \(N \). From equation (10.5) the achievable rate of OFDM depends on the power allocated to the various subcarriers, i.e. \(\{Q_l\}_{l=0}^{N-1} \). We now can maximize the rate by choosing an appropriate power allocation subject to the constraint that \(\sum_{l=0}^{N-1} Q_l \leq P_{\text{tot}} \).

\[
\text{maximize} \frac{1}{2} \sum_{l=0}^{N-1} \log \left(1 + Q_l \frac{|P(l)|^2}{\sigma^2} \right)
\]

\[
\text{such that} \sum_{l=0}^{N-1} Q_l \leq P_{\text{tot}}
\]

Clearly this is a problem we have seen (and solved!) before, which led us to the water filling input spectrum. We now solve the discrete version of this problem and give an explicit algorithm that calculates the optimal power distribution \(\{Q\} \). As before, let us solve the problem using Kuhn-Tucker conditions. Define the Lagrangian,

\[J = \frac{1}{2} \sum_{l=0}^{N-1} \log \left(1 + Q_l \frac{|P(l)|^2}{\sigma^2} \right) - \lambda \sum_{l=0}^{N-1} Q_l. \]

This yields,

\[
\frac{\partial J}{\partial Q_l} = \frac{1}{2} \frac{1}{1 + Q_l \frac{|P(l)|^2}{\sigma^2}} \frac{|P(l)|^2}{\sigma^2} - \lambda.
\]

Using the Kuhn-Tucker conditions, we have for optimality

\[
\frac{\partial J}{\partial Q_l} = 0 \quad \text{if } Q_l > 0
\]

\[
\frac{\partial J}{\partial Q_l} < 0 \quad \text{if } Q_l = 0
\]
Thus, for \(\{ l : Q_l > 0 \} \) we get,
\[
\frac{1}{2} \frac{\sigma^2}{|P(l)|^2} + Q_l = \lambda
\]
and hence
\[
Q_l = \nu - \frac{\sigma^2}{|P(l)|^2} \quad l \in \{ l : Q_l > 0 \}
\]
where \(\nu = 1/2\lambda \). Now using Kuhn-Tucker conditions we can easily verify that the optimal power distribution \(\{ Q_l^* \} \) can be written as
\[
Q_l^* = \left(\nu - \frac{\sigma^2}{|P(l)|^2} \right) ^+ \forall l \in \{0, \ldots, N-1\}
\]
where \((x)^+ = \begin{cases} x & \text{if } x \geq 0 \\ 0 & \text{else} \end{cases}\)
and \(\nu \) is chosen such that \(\sum_{l=0}^{N-1} \left(\nu - \frac{\sigma^2}{|P(l)|^2} \right)^+ \leq P_{\text{tot}} \).
The “waterfilling” algorithm computes \(\nu \) and therefore gives us a method to calculate the optimal power distribution. The algorithm is derived in Section 9.2.2.

10.2.2 Waterfilling algorithm

Step 1

If \(Q_l > 0 \ \forall l \), then finding \(\nu \) becomes easy
\[
\sum_{l=0}^{N-1} \left[\nu - \frac{\sigma^2}{|P(l)|^2} \right] = P_{\text{tot}}
\]
This yields,
\[
N \nu = P_{\text{tot}} + \sum_{l=0}^{N-1} \frac{\sigma^2}{|P(l)|^2}
\]
or
\[
\nu = \frac{1}{N} \left[P_{\text{tot}} + \frac{1}{N} \sum_{l=0}^{N-1} \frac{\sigma^2}{|P(l)|^2} \right] \quad (10.7)
\]
However, for such a choice of \(\nu \), we have
\[
Q_l = \nu - \frac{\sigma^2}{|P(l)|^2}
\]
\[
= \frac{1}{N} P_{\text{tot}} + \frac{1}{N} \sum_{l=0}^{N-1} \frac{\sigma^2}{|P(l)|^2} - \frac{\sigma^2}{|P(l)|^2}
\]
There is no guarantee that the \(Q_l \) that arises from a choice of \(\nu \) given in equation (10.7) would be non-negative in (10.8) in general.
Step 2

If we know the set of “active” subchannels \(\mathcal{A} = \{ l : Q_l > 0 \} \), then again finding \(\nu \) becomes easy.

\[
\sum_{l \in \mathcal{A}} \left(\nu - \frac{\sigma^2}{|P(l)|^2} \right) = P_{\text{tot}}
\]

This yields,

\[
\nu = \frac{1}{|\mathcal{A}|} P_{\text{tot}} + \frac{1}{|\mathcal{A}|} \sum_{l \in \mathcal{A}} \frac{\sigma^2}{|P(l)|^2}
\]

and

\[
Q_l = \begin{cases}
\frac{1}{|\mathcal{A}|} P_{\text{tot}} + \frac{1}{|\mathcal{A}|} \sum_{k \in \mathcal{A}} \frac{\sigma^2}{|P(k)|^2} - \frac{\sigma^2}{|P(l)|^2} & l \in \mathcal{A} \\
0 & \text{otherwise}
\end{cases}
\]

However, one does not know the active set \(\mathcal{A} \).

Step 3

In order to find the correct active set we can start by assuming \(\mathcal{A} = \{0, \ldots, N - 1\} \), i.e. the entire set of subcarriers. Then from (10.7) we can find the appropriate \(\nu \). But (10.8) would tell us which \(Q_l \) are negative. If there is \(Q_l < 0 \), then we drop the “worst” channel from the active list i.e.,

\[
l_1 = \arg \max_l \frac{\sigma^2}{|P(l)|^2}
\]

and consider the active list as \(\mathcal{A} = \{0, \ldots, N - 1\} \setminus l_1 \), where the notation means the set difference.

Given this order preference in the choice of active subchannels we reduce the number of candidate active sets from \(N! \) to \(N \) by ordering \(\left\{ \frac{\sigma^2}{|P(l)|^2} \right\} \) in increasing order. We can index the candidate active sets by choice (in increasing order) of the values \(\left\{ \frac{\sigma^2}{|P(l)|^2} \right\} \). By doing this one can find the optimal active set.

The main step in this is the observation that if a particular subchannel \(l' \) is active, then all subchannels such that

\[
\frac{\sigma^2}{|P(l')|^2} \leq \frac{\sigma^2}{|P(l)|^2}
\]

are also active. This can be seen from the relationship in (10.6) and we next give a formal statement and proof of this claim.

Claim 10.2.1. If the optimal active set \(\mathcal{A}^* \) contains subchannel \(l' \), then it must also contain elements \(\tilde{l} \) when

\[
\frac{\sigma^2}{|P(l')|^2} \leq \frac{\sigma^2}{|P(l)|^2}
\]

Proof: Suppose, \(\mathcal{A}^* \) is the optimal active set and it contains element \(l' \) and does not contain an element \(\tilde{l} \) which is such that

\[
\frac{\sigma^2}{|P(l')|^2} < \frac{\sigma^2}{|P(l)|^2}
\]

Now, we prove the assertion by contradiction. Since \(l' \in \mathcal{A}^* \) and \(\tilde{l} \notin \mathcal{A}^* \Rightarrow Q_{l'} > 0 \), \(Q_{\tilde{l}} = 0 \). And the optimal rate is

\[
R^* = \frac{1}{2} \sum_{l \in \mathcal{A}^*} \log \left(1 + Q_l \frac{|P(l)|^2}{\sigma^2} \right)
\]
Now consider a different power allocation \(\{ \hat{Q}_t \} \) where all the allocation is the same except we choose for small enough \(\varepsilon > 0 \),

\[
\hat{Q}_t = Q_t - \varepsilon \quad \text{and} \quad \hat{Q}_l = \varepsilon > 0
\]

For this allocation

\[
\hat{R} = \frac{1}{2} \sum_{l \in A^* \setminus l'} \log \left(1 + \frac{Q_l |P(l)|^2}{\sigma^2} \right) + \frac{1}{2} \log \left(1 + \frac{(Q_t - \varepsilon) |P(l')|^2}{\sigma^2} \right) + \frac{1}{2} \log \left(1 + \varepsilon \left(\frac{|P(\tilde{l})|^2}{\sigma^2} \right) \right)
\]

Using (10.10) and (10.11) we get

\[
R^* - \hat{R} = \frac{1}{2} \log \left(1 + Q_l |P(l')|^2 \right) - \frac{1}{2} \log \left(1 + (Q_t - \varepsilon) |P(l')|^2 \right) - \frac{1}{2} \log \left(1 + \varepsilon \left(\frac{|P(\tilde{l})|^2}{\sigma^2} \right) \right)
\]

\[
\preceq \frac{1}{2} \log \left(1 + Q_l |P(l')|^2 \right) - \frac{1}{2} \log \left(1 + (Q_t - \varepsilon) |P(l')|^2 \right) - \frac{1}{2} \log \left(1 + \varepsilon \left(\frac{|P(\tilde{l})|^2}{\sigma^2} \right) \right)
\]

where (a) follows because \(\log \) is an increasing function and \(\frac{|P(\tilde{l})|^2}{\sigma^2} > \frac{|P(l')|^2}{\sigma^2} \) due to assumption (10.10).

Continuing with (10.12) we get

\[
R^* - \hat{R} \leq \frac{1}{2} \log \left(1 + Q_l |P(l')|^2 \right) - \frac{1}{2} \log \left(1 + (Q_t - \varepsilon) |P(l')|^2 \right) - \frac{1}{2} \log \left(1 + (Q_t - \varepsilon) |P(l')|^2 \right) - \frac{1}{2} \log \left(1 + \varepsilon \left(\frac{|P(\tilde{l})|^2}{\sigma^2} \right) \right)
\]

\[
= \frac{1}{2} \log \left(\frac{\sigma^2 + Q_l |P(l')|^2}{\sigma^2 + \varepsilon |P(l')|^2} \right) - \frac{1}{2} \log \left(1 + (Q_t - \varepsilon) |P(l')|^2 \right)
\]

\[
= \frac{1}{2} \log \left(1 + \frac{(Q_t - \varepsilon) |P(l')|^2}{\sigma^2 + \varepsilon |P(l')|^2} \right) - \frac{1}{2} \log \left(1 + (Q_t - \varepsilon) |P(l')|^2 \right) - \frac{1}{2} \log \left(1 + \varepsilon \left(\frac{|P(\tilde{l})|^2}{\sigma^2} \right) \right)
\]

\[
< 0
\]

Hence \(R^* < \hat{R} \) and therefore \(A^* \) cannot be the optimal active set assignment. Therefore we have a contradiction and hence the claim is proved.

\[\square \]

Therefore, we need to consider only \(N \) candidate active sets instead of \(N! \) and therefore giving a \(O(N) \) steps water filling algorithm.
10.2.3 Algorithm Analysis

1. Sort \(\{\sigma^2|P(l_j)|^2\} \) in ascending order, i.e.
 \[
 \frac{\sigma^2}{|P(l_1)|^2} \leq \frac{\sigma^2}{|P(l_2)|^2} \leq \ldots \leq \frac{\sigma^2}{|P(l_N)|^2}
 \]

2. Let \(\mathcal{A} = \{l_1, l_2, \ldots, l_N\} \), \(p = N \)

3. Compute
 \[
 \nu = \frac{1}{|\mathcal{A}|} P_{tot} + \frac{1}{|\mathcal{A}|} \sum_{k \in \mathcal{A}} \frac{\sigma^2}{|P(k)|^2}
 \]

4. If \(\exists Q_k < 0 \), then let \(\mathcal{A} = \mathcal{A} \setminus l_p \) and \(p = p - 1 \). Goto step 3.

 Else optimal power allocation found.

Notes

1. This algorithm terminates in at most \(N \) steps.

2. The sorting takes \(O(N \log N) \) complexity and the computation of \(\nu \) takes \(O(N) \) complexity. Hence we have \(O(N \log N) \) algorithm for computing the optimal power allocation.

3. We devised this algorithm based on claim 10.2.1 where we showed that the ordering of \(\{\sigma^2|P(l_j)|^2\} \) determined the active set. Therefore we choose the complete set as \(\mathcal{A} \) first and then eliminate the worst channel, one-by-one till we get the correct \(\mathcal{A}^* \).

4. Ties in this algorithm can be resolved arbitrarily since the final rate does not get affected.

5. The algorithm does not take into account particular alphabets/constellations one might use for the transmission. Other algorithms that utilize this have been found. They are outside the scope of this class.

10.3 An information-theoretic approach to MMSE-DFE

Fact 1 If \((x, y)\) are jointly Gaussian then \(P_{X|Y}(x|y) \) is also Gaussian with mean \(\mathbb{E}[x|y] \) and covariance
 \[
 \mathbb{E}[(x - \mathbb{E}[x|y])(x - \mathbb{E}[x|y])^*] = R_{X|Y}^\perp
 \]
which is the error covariance of a linear estimator of \(x \) from \(y \).

Fact 2 For a Gaussian random vector \(x \sim \mathcal{C}_p(0, R_{xx}) \) the entropy is
 \[
 H_x = \log \left((\pi e)^N |R_{xx}| \right)
 \]
where \(N \) is the dimension of \(x \) and \(|R_{xx}| \) is the determinant of \(R_{xx} \)

Fact 3 If \((x, y)\) are jointly Gaussian, then the conditional entropy \(H_{X|Y} \) is
 \[
 H_{X|Y} = \log \left((\pi e)^N |R_{X|Y}^\perp| \right)
 \]
where \(R_{X|Y}^\perp \) is the error covariance of linear estimator of \(x \) from \(y \).
CHAPTER 10. RELIABLE TRANSMISSION FOR ISI CHANNELS

Now,
\[R_x^y = R_{xy} - R_{xy} R_{yy}^{-1} R_{yx} \]

where
\[R_{xy} = \mathbb{E}[xy^*], \quad R_{yx} = \mathbb{E}[yx^*], \quad R_{yy} = \mathbb{E}[y^*y] \]

For a stationary Gaussian process, the chain rule of entropy allows computation of its entropy based on prediction. For a sequence \(x = \{x_k, x_{k-1}, \ldots, x_0\} \),
\[H_x = H_{x_k|x_{k-1}, \ldots, x_0} + H_{x_{k-1}|x_{k-2}, \ldots, x_0} + \cdots + H_{x_1|x_0} + H_{x_0} \]

where we have defined \(H_{x_0|x_{-1}} = H_{x_0} \).

Definition 10.3.1. For a stationary process \(\{x_k\} \), the entropy rate \(H_x(D) \) is,
\[H_x(D) = \lim_{k \to \infty} \frac{1}{k+1} I(x_k; y_{1:k}) = \lim_{k \to \infty} \frac{1}{k+1} \sum_{n=0}^{k} H(x_n|x_{n-1}, \ldots, x_0) \]

For a stationary sequence this quantity converges to
\[H_x(D) = \lim_{k \to \infty} H(x_k|x_{k-1}, \ldots) \]

This is related to the estimation error associated with predicting \(x_k \) from its past, i.e.
\[H_x(D) = \log \left[\pi e \sigma^2_{x|past} \right] \]

where \(\sigma^2_{x|past} \) is the MMSE error of predicting \(x_k \) (the “present”) from the entire history of the sequence. Given input \(\{x_k\} \) and output \(\{y_k\} \)
\[I(x(D); y(D)) = \lim_{k \to \infty} \frac{1}{k+1} I(x_0^k, y_0^k) \]

where \(x_0^k = \{x_0, \ldots, x_k\} \), \(y_0^k = \{y_0, \ldots, y_k\} \) and \(I(x; y) \) is the mutual information between \(x \) and \(y \). For an inter-symbol interference (ISI) channel, we have seen from before that
\[I(x(D); y(D)) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \log \left[\frac{S_y(w)}{S_x(w)} \right] dw \]

where \(S_y(w) \) and \(S_x(w) \) are the power spectral densities of the processes \(\{y_k\} \) and the noise \(\{z_k\} \) respectively. Now
\[I(x(D); y(D)) = H_{x(D)} - H_{x(D)|y(D)} = H_{x_k|x_{k-1}, \ldots, x_0} - H_{x_k|y^\infty, x_{k-1}, \ldots} \]

Therefore the mutual information can be written as,
\[I(x(D); y(D)) = I(x_k; y^\infty|x^k_{-\infty}) \]
10.3.1 Relationship of mutual information to MMSE-DFE

From 10.13 we see that

\[I(x(D); y(D)) = H_{x_k|x_{-\infty}^{k-1}} - H_{x_k|y_{-\infty}^\infty,x_{-\infty}^{k-1}} \]

\[= \log(\pi e) \sigma_x^2 - \log(\pi e) \sigma_{x_k|y_{-\infty}^\infty,x_{-\infty}^{k-1}}^2 \]

(10.14)

But,

\[\sigma_{x_k|x_{-\infty}^{k-1}}^2 = \gamma_x \text{ MMSE associated with predicting } x_k \text{ from its past} \]

\[\sigma_{x_k|y_{-\infty}^\infty,x_{-\infty}^{k-1}}^2 = \sigma_{x_k|y_{-\infty}^\infty,x_{-\infty}^{k-1}}^2 \text{ The variance of error in perfect past decisions, DFE.} \]

Inserting this into 10.14 we get,

\[I(x(D); y(D)) = \frac{\gamma_x}{\sigma_{x_k|y_{-\infty}^\infty,x_{-\infty}^{k-1}}^2} \]

\[= \log \frac{\gamma_x}{\sigma_{x_k|y_{-\infty}^\infty,x_{-\infty}^{k-1}}^2} \]

\[= \log \text{SNR}_{\text{MMSE-DFE}} \]

\[= \log [1 + \text{SNR}_{\text{MMSE-DFE}}] \]

This results in what is known as the “CDEF result” (after the result of Cioffi-Dudevoir-Eyuboglu-Forney done in 1995).

Lemma 10.3.1 (CDEF result). The unbiased SNR of a MMSE-DFE is related to the mutual information for a linear ISI channel with additive Gaussian noise in exactly the same formula as the SNR of an ISI free channel is related to the mutual information of that channel. Assuming that the input and output are jointly (stationary) Gaussian and the MMSE-DFE exists.

10.3.2 Consequences of CDEF result

1. This result seems to show that with the perfect past decisions assumption, the MMSE-DFE is a canonical structure, i.e. it can achieve the capacity of the ISI channel.

2. In the development of the MMSE-DFE, we assumed i.i.d. inputs, which meant a “flat” input spectrum \(S_x(\omega) \). The development we had on the capacity of the ISI channels indicates that this might not be optimal. Hence the modification we need to make the MMSE-DFE canonical, is input spectral shaping.

3. There are several other caveats and we will next do a more careful derivation of the result to illuminate these caveats.

Caveats of CDEF results

To do this we establish first a lemma.

Lemma 10.3.2. Let \(\mathbf{x} = \{x_k\} \), \(\mathbf{y} = \{y_k\} \) be jointly Gaussian zero mean random processes, then

\[I(\mathbf{x}; \mathbf{y}) = I(\mathbf{x}; \pi_{\mathbf{y}}(\mathbf{x})) \]

where \(\pi_{\mathbf{y}}(\mathbf{x}) \) is the orthogonal projection operator of \(\mathbf{y} \) onto \(\mathbf{x} \), i.e., from Gaussian processes,

\[\pi_{\mathbf{y}}(\mathbf{x}) = \mathbb{E}[\mathbf{x}|\mathbf{y}] \]
Recall from linear prediction, of process \{x_k\}, i.e., predicting \(x_k\) from its infinite past,

\[
\hat{x}_k = \sum_{m=-1}^{\infty} a_m x_{k-m} \Rightarrow \hat{X}(D) = A(D)X(D)
\]

with \(A(D)\) being strictly causal. \(A(D) = 1 - A'(D)\) and we found that

\[
A'(D) = \frac{1}{L(D)} \quad \text{where}
\]

\[
S_x(D) = \gamma_x L(D) L^*(D^{-*})
\]

where \(L(D)\) is monic, minimum and stable.

Now, using the chain rule of mutual information,

\[
I(x_k; y_{-\infty}^\infty, x_{-\infty}^{k-1}) = I(x_k; x_{-\infty}^{k-1}) + I(x_k; y_{-\infty}^\infty | x_{-\infty}^{k-1})
\]

Hence, using (10.14) we get

\[
I(X(D); Y(D)) = I(x_k; y_{-\infty}^\infty, x_{-\infty}^{k-1}) - I(x_k; x_{-\infty}^{k-1})
\]

Therefore, unless we have a white input, i.e. \(I(x_k; x_{-\infty}^{k-1}) = 0\), the two quantities \(I(x_k; y_{-\infty}^\infty, x_{-\infty}^{k-1}) \) and \(I(X(D); Y(D))\) are distinct and in fact,

\[
I(X(D); Y(D)) \leq I(x_k; y_{-\infty}^\infty, x_{-\infty}^{k-1})
\]

with equality iff the input is white.

However, as we have seen in the waterfilling solution to achieving ISI channel capacity, the optimal sequence \(\{x_k\}\) need not to be white and therefore the above quantities are distinct. It can be shown that

\[
I(x_k; y_{-\infty}^\infty, x_{-\infty}^{k-1}) = I(x_k; r_k) + I(e_k; e_{k-1}^\infty)
\]

\[
= I(x_k; r_k + \hat{e}_k)
\]

(10.15)

where

\[
r_k = \mathbb{E}\left[x_k | y_{-\infty}^\infty \right], e_k = x_k - \hat{x}_k
\]

Pictorially this is depicted in Figure 10.7.

In Figure 10.7, we use, \(I(e_k; e_{k-1}^\infty) = I(e_k; \hat{e}_k)\), where \(\hat{e}_k = \mathbb{E}\left[e_k | e_{k-1}^\infty \right]\), by using the lemma. Moreover for

\[
e_k = x_k - r_k,
\]

it has a spectral factorization

\[
S_e(D) = \gamma_e L_e(D) L_e^*(D^{-*})
\]

yielding a linear predictor filter,

\[
A'_e(D) = \frac{1}{L_e(D)}
\]

\[
\hat{E}(D) = [1 - A'_e(D)]E(D) = [1 - A'_e(D)][X(D) - R(D)]
\]

\[
= X(D) - R(D) - A'_e(D)X(D) + A'_e(D)R(D)
\]

\[
\Rightarrow R(D) + \hat{E}(D) = X(D)[1 - A'_e(D)] + A'(D)R(D)
\]

Using this we can modify figure (10.7) as,
Now figure 10.8 almost looks like the MMSE-DFE with perfect past decisions, since $A'(D) - 1$ is strictly causal. However, from (10.15) it is clear that it represents $I(x_k; y_{-\infty}^\infty, x_{-\infty}^{k-1})$ which in general is larger than the ISI channel capacity. Therefore we really need to look at

$$I(x_k; y_{-\infty}^\infty, x_{-\infty}^{k-1}) - I(x_k; x_{-\infty}^{k-1}) = I(X(D); Y(D))$$

to find the capacity of the ISI channel and relate it to the DFE case. This caveat shows that there is no artificial boost and that one has to look at the channel symbol-by-symbol wise rather than sequence-wise.

Main message:

1. If one interprets the CDEF result correctly, we see that the DFE combined with input spectral shaping and sophisticated coding can actually be a canonical transmission/reception scheme.

2. There are several caveats, one is that of perfect decision feedback.

3. The other is to view the channel symbol-wise and not sequence-wise.

Let us relate the $SNR_{MMSE-DFE}$ to the CDEF result. Now, if we use Salz formula for $\sigma_{MMSE-DFE}^2$,

$$\sigma_{MMSE-DFE}^2 = \frac{N_0}{\|p\|^2} \exp \left(- \frac{T}{2\pi} \int_{-\pi/T}^{\pi/T} \ln \left(Q(\sqrt{\frac{1}{SNR_{MFB}}}) + \frac{1}{SNR_{MFB}} \right) d\omega \right)$$
Using the Salz formula in the CDEF result we get

\[
I(X(D);Y(D)) = \log \left[\frac{\gamma_x}{N_0/2} \exp \left(\frac{T}{2\pi} \int_{-\pi/T}^{\pi/T} \log \left(Q(e^{-j\omega T}) + \frac{1}{SNR_{MFB}} \right) \right) d\omega \right]
\]

\[
= \log \left(\frac{||p||^2\gamma_x}{N_0/2} \right) + \frac{T}{2\pi} \int_{-\pi/T}^{\pi/T} \log \left[Q(e^{-j\omega T}) + \frac{1}{SNR_{MFB}} \right] d\omega
\]

\[
= \log SNR_{MFB} + \frac{T}{2\pi} \int_{-\pi/T}^{\pi/T} \log \left(\frac{1}{SNR_{MFB}} \right) d\omega
\]

\[
+ \frac{T}{2\pi} \int_{-\pi/T}^{\pi/T} \log \left[Q(e^{-j\omega T})SNR_{MFB} + 1 \right] d\omega
\]

\[
= \frac{T}{2\pi} \int_{-\pi/T}^{\pi/T} \log \left[1 + Q(e^{-j\omega T})SNR_{MFB} \right] d\omega
\]

This result for i.i.d. inputs and we can improve the rates by input spectral shaping. The V.34 modem does this with precoding to get close to the predicted channel capacity.